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Part 1:

Introduction to Causal Inference and Policy Evaluation



Overview

• Introduction to Causal Inference and Policy Evaluation

▶ Potential Outcomes and Assignment Mechanisms

▶ Finite and Large Sample Inference in Randomized Experiments

▶ Fisher’s exact P-values Approach



Causal Inference

• The goal of program evaluation is to assess the causal effect of program
or policy interventions. Examples:

▶ Class size on test scores

▶ Minimum wage on employment

▶ Literacy intervention on kindergartners’s reading ability

• In addition, we may be interested in the effect of variables that do not
represent policy interventions. Examples:

▶ Incentive scheme on employer productivity

▶ Terrorist risk on economic behavior



Causes of effects vs. effects of causes

Important distinction between effect and cause

Cause: an event that generates some phenomenon

Effect: the consequence (or one of the consequences) of the cause

Crucial asymmetry in the difficulty of learning about the cause of an
effect versus learning about the effect of a cause

Program evaluation focuses on effect-of-cause questions
▶ Not: why do younger citizens vote at lower rates?
▶ Rather: what is the effect of same-day registration on youth turnout?



Key Ideas

• Assignment mechanism is the procedure that determines which units are
selected for treatment intake.
▶ Examples include:

1. random assignment

2. selection on observables

3. selection on unobservables

• Typically, treatment effects models attain identification by restricting the
assignment mechanism in some way.

• Causality is defined by potential outcomes, not by realized (observed)
outcomes.

• Observed association is neither necessary nor sufficient for causation.

• Estimation of causal effects of a treatment (usually) starts with studying
the assignment mechanism.



Causal Inference Framework

Two essential ingredients:

1. Potential Outcomes: each individual has a different outcome
corresponding to each level that the treatment takes

2. Assignment Mechanism: each individual is assigned treatment based on
some mechanism, and this mechanism guides how estimation and
inference will be conducted



1. Potential Outcomes: Causation as Manipulation

• For causal analysis, it is essential that “each unit be potentially exposable
to any one of the causes” [Holland, 1986].

▶ If units could have been exposed to cause but were not: no problem.

▶ If units could not have been exposed to cause: might not really be a cause

▶ Example: worker’s education level versus worker’s gender.

• Each i has as many potential outcomes as different possible treatments:

▶ If treatment is binary, potential outcomes for unit i are Yi(1) and Yi(0)

▶ Called “potential” outcomes because only one of them is observed.

▶ Observed outcome: outcome corresponding to level of treatment actually
selected by (or assigned to) the unit.



1. Potential Outcomes: Causation as Manipulation

• This introduces the idea of counterfactual:

What would the outcome of this unit look like if the unit had been
exposed to a different treatment?

• Key ideas:

▶ Non-manipulable attributes versus manipulable causes.

▶ Pre-exposure (“pre-treatment”) versus post-exposure (“post-treatment”).



2. The assignment mechanism

P(T|X,Y(0),Y(1))

• Conditional probability of full assignment T given potential outcomes
and covariates.

• The process by which each unit selected or was assigned the particular
treatment condition that it received

• Two important cases

Known, independent of Yi(0),Yi(1): random assignment

Unknown, (conditionally) independent of Yi(0),Yi(1): unconfounded
assignment

• Opposite of conventional focus on distribution of observed outcomes
given covariates, Yi|Xi,Ti

• pi(X,Y(0),Y(1)) =
∑

T:Ti=1 P(T|X,Y(0),Y(1)) (i’s assignment prob)



Potential Outcomes Framework: Notation

Basic Binary Treatment Setup

• Each unit exposed to binary treatment ⇒ two potential outcomes
▶ Ti = 1 if i receives treatment; Ti = 0 if i receives control

▶ Yi(1): outcome that would occur if i were exposed to treatment

▶ Yi(0): outcome that would occur if i were exposed to control

• Observed data: (Yi,Ti)
′ where

Yi = Yi(Ti) = Ti · Yi(1) + (1 − Ti) · Yi(0)

More General Setup

• Multiple treatments: Ti ∈ T and {Yi(t) : t ∈ T }, with T finite, countable
or uncountable.

• Throughout we assume: T = {0, 1, 2, · · · , J}

• Observed data: Yi = Yi(T) =
J∑

t=0
1(Ti = t) · Yi(t)



Stable Unit Treatment Value Assumption (SUTVA)

• Key (implicit) assumption: Yi(t) depends only on i’s treatment status
▶ More general would be: Yi(t) with t = (t1, t2, · · · , tn)′ ∈ Rn.

• Implies that potential outcomes of unit i are unaffected by treatment
status of unit j.

• Rules out “interference”, “spillovers”, etc., across units, such as
▶ Effect of fertilizer on plot yield.
▶ Effect of flu vaccine on hospitalization.

• SUTVA may be problematic:
▶ Choose the units of analysis to minimize interference across units!
▶ Address “interference”, “spillovers”, etc., explicitly.



Treatment Effects of Interest

Treatment Effect with Binary Treatments:

τi := Yi(1)− Yi(0)

• Effect of treatment cause (relative to control cause) on unit i.

• τi depends on potential outcomes, not observed outcomes.

• Fundamental Problem of Causal Inference:
▶ For unit i, we observe either Yi(1) or Yi(0), but never both!
▶ Impossible to learn about individual causal effect in general.

Define Aggregate Treatment Effects:

• Average Treatment Effect: τATE := E[Yi(1)− Yi(0)]

• Quantile Treatment Effect: τQTE(p) := F−1
Yi(1)

(p)− F−1
Yi(0)

(p)
▶ Can be defined for sample or (super) population.
▶ Can be defined for subpopulations (on T or observables covariates).



Random Assignment of Treatment

Restrictions on the assignment mechanism

• Probabilistic: 0 < pi(X,Y(0),Y(1)) < 1

• Unconfounded: Pr(T|X,Y(0),Y(1)) = Pr(T|X,Y(0)′,Y(1)′)

• Individualistic: pi(X,Y(0),Y(1)) = q(Xi,Yi(0),Yi(1))

Classical Randomized Experiment

• A classical randomized experiment is an assignment mechanism that

1. is probabilistic
2. is individualistic
3. is unconfounded
4. has functional form that is known and controlled by the researcher



Classical Randomized Experiments

• Taxonomy
▶ Bernoulli trials: P[T = t|X,Y(0),Y(1)] = pn with p ∈ (0, 1).

▶ Fixed margins: P[T = t|X,Y(0),Y(1)] =
(n1

n

)−1
where

n1 =
∑n

i=1 1(Ti = 1)

▶ Stratified randomized experiments: fixed margins by subgroups.

▶ Paired randomized experiments: stratified experiments with nj = 2 for all
j.

• All of the above designs satisfy the main characteristics of a classical
randomized experiment:

▶ individualistic assignment mechanism

▶ probabilistic assignment mechanism

▶ unconfounded assignment mechanism

▶ known assignment mechanism



Analysis of Randomized Experiments

Two frameworks for analysis:

• Conventional or super-population framework
▶ Data is sample from a larger population
▶ Potential outcomes are random variables
▶ Inference relies on large-sample approximations

• Fisherian framework
▶ The units in the sample are the population: no sampling, no

approximations
▶ Potential outcomes are fixed quantities
▶ Inference relies on exact finite-sample distribution of treatment assignment



Analysis of Experiments: Conventional Framework

• When potential outcomes are random and treatment is randomly
assigned, treatment and potential outcomes are statistically independent

Ti ⊥⊥ (Yi(0),Yi(1))

• This implies

Ti ⊥⊥ Yi(0) and Ti ⊥⊥ (Yi(1)− Yi(0))

and

E[Yi(1)] = E[Yi(1)|Ti = 1]

E[Yi(1)] = E[Yi(1)|Ti = 0]

E[Yi(0)] = E[Yi(0)|Ti = 1]

E[Yi(0)] = E[Yi(0)|Ti = 0]

E[Xi] = E[Xi|Ti = 1]

E[Xi] = E[Xi|Ti = 0]

for (predetermined) covariates Xi



Analysis of Experiments: Conventional Framework

• We can use observed outcomes to learn about potential outcomes

E[Yi(1)] = E[Yi(1)|Ti = 1] = E[Yi|Ti = 1]

E[Yi(0)] = E[Yi(0)|Ti = 0] = E[Yi|Ti = 0]

• The average treatment effect is recovered from observed outcomes:

E[Yi(1)− Yi(0)] = E[Yi|Ti = 1]− E[Yi|Ti = 0]

• Furthermore, ATE and ATET are equal because

τATE = E[Yi(1)− Yi(0)] = E[Yi(1)− Yi(0)|Ti = 1] = τATET



Analysis of Experiments: Conventional Framework

• Also, QTE and QTET are identified and equal

τQTE(q) = F−1
Yi(1)

(q)−F−1
Yi(0)

(q) = F−1
Yi(1)|Ti=1(q)−F−1

Yi(0)|Ti=1(q) = τQTET(q)

▶ However, RCTs do not identify the quantiles of the effect: F−1
Yi(1)−Yi(0)(q)



Analysis of Experiments: Conventional Framework

• Suppose n units randomly assigned to two treatments. Consider
τATE = E[Yi(1)− Yi(0)].

• Takes potential outcomes as random.

• Plug-in approach (analogy approach), we may construct:

τ̂ = Ȳ1 − Ȳ0

with Ȳ1 =
∑n

i=1 TiYi∑n
i=1 Ti

=
∑n

i=1 TiYi
N1

, Ȳ0 =
∑n

i=1(1−Ti)Yi∑n
i=1(1−Ti)

=
∑n

i=1(1−Ti)Yi
N0

• τ̂ is unbiased for τATE, and τ̂ is consistent for τATE.



Analysis of Experiments: Conventional Framework

• Suppose n units randomly assigned to two treatments. Consider
τATE = E[Yi(1)− Yi(0)].

• Distribution theory: under H0 : τATE = τ0,

Wn =
τ̂ − τ0√
σ2

1
N1

+
σ2

0
N0

→d N (0, 1), σ2
t =

1
Nt − 1

n∑
i=1

Di(t) (Yi − Ȳt)
2

• We reject H0 (against H1 : τATE ̸= τ0) at level α ∈ (0, 1) iff
|Wn| > Φ1−α/2.

• (1 − α) Confidence interval for τ0 :

CI1−α(τ0) =

τ̂ − Φ1−α/2 ·

√
σ2

1
N1

+
σ2

0
N0

, τ̂ +Φ1−α/2 ·

√
σ2

1
N1

+
σ2

0
N0





Analysis of Experiments: Fisherian Framework

• Potential outcomes are fixed quantities

• The units in the sample are seen as the population: sample size is also
fixed

• Hypothesis of interest is a sharp null hypothesis that allows for
imputation of full profile of potential outcomes

• Inferences are based on the known randomization distribution of the
treatment assignment



Analysis of Experiments: Fisherian Framework

• Because we ran an experiment, the randomization mechanism that
assigned units to treatment and control is known

• Since this assignment is entirely known, the distribution of the treatment
assignment is known

• Under the sharp null, the only source of randomness is the treatment
assignment

• Therefore, we can use the known distribution of the random variable T to
derive the distribution of any test-statistic s(T,Y)



Fisherian Framework: Example

• Six subjects assigned binary treatment: 3 treated, 3 control

• Realized treatment assignment T = [1, 0, 0, 1, 1, 0]

•
(

6
3

)
= 20 possible treatment assignments

• Obtain the distribution of the test-statistic under the null hypothesis of no
treatment effect

T̃1 = [1, 1, 1, 0, 0, 0] =⇒ s̃1 = Y1+Y2+Y3
3 − Y4+Y5+Y6

3

T̃2 = [1, 1, 0, 0, 0, 1] =⇒ s̃2 = Y1+Y2+Y6
3 − Y3+Y4+Y5

3
...

...
T̃20 = [0, 0, 0, 1, 1, 1] =⇒ s̃20 = Y4+Y5+Y6

3 − Y1+Y2+Y3
3



Fisherian Framework: Example
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Fisherian Framework: Example
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Analysis of Experiments: Fisherian Framework

• Let T be an n-dimensional column vector whose elements are the Ti for
all units

• We randomize T: this randomization mechanism is by known by
definition

• We collect all observed outcomes Yi in Y

• We test sharp null hypothesis

H0 : Yi(1) = Yi(0) for i = 1, 2, . . .N

• Under H0, Yi = Yi(1) = Yi(0) for every i: both potential outcomes are
known



Analysis of Experiments: Fisherian Framework

• In order to test the null hypothesis, we define a test-statistic s(T,Y)

• Example: difference in means

s(T,Y) =

∑n
i=1 TiYi∑n

i=1 Ti
−

∑n
i=1(1 − Ti)Yi∑n

i=1(1 − Ti)

• Since Y is fixed under the null, P [S(Y,T) ≤ s] is fully known because
the law of T is known

• The (one-sided) exact p-value is the probability of seeing a value of
s(T,Y) equal to or greater than the observed value s(t,Y)

p-value = Pr(s(T,Y) ≥ s(t,Y)) =
∑
t∈Ω

1 {s(t,Y) ≥ S} · Pr(T = t)

• Thus, the p-value is measure of how unusual the observed value of the
test-statistic is given its null distribution



Analysis of Experiments: Fisherian Framework

• We collect all possible realizations of T in the set Ω

• The treatment assignment mechanism must give a positive probability of
receiving treatment and control to every unit

• Many mechanisms satisfy this requirement

• Common choice: “complete” or “fixed-margins” randomization

▶ Fix number of treatments at nt and number of controls at nc

▶ In this case, the set Ω has
(n

nt

)
= n!

nt!(n−nt)!
elements

▶ All elements of Ω equally likely, Pr(T = t) = 1
( n

nt)
▶ p-value = Pr(s(T,Y) ≥ s(t,Y)) =

∑
t∈Ω 1 {s(t,Y) ≥ S} · 1

( n
nt)



Example: Job Training Partnership Act (JTPA)

• Largest randomized training evaluation ever undertaken in the U.S.

▶ started in 1983 at 649 sites throughout the country.

• Sample: Disadvantaged persons in labor market (previously unemployed
or low earnings)

• Ti: Assignment to one of three general service strategies

▶ classroom training in occupational skills

▶ on-the-job training and/or job search assistance

▶ other services (eg. probationary employment)

• Yi: earnings 30 months following assignment

• Xi: Characteristics measured before assignment

▶ age, gender, previous earnings, race, etc.



Discussion and Final Remarks
Threats to the Validity of Randomized Experiments
• Internal validity: can we estimate treatment effect in our sample?

▶ Fails when there are differences between treated and controls (other than
the treatment itself) that affect the outcome and that we cannot control for.

• External validity: can we extrapolate our estimates to other populations?
▶ Fails when the treatment effect is different outside the evaluation

environment.

Most Common Threats to Internal Validity
• Failure of randomization.
• Non-compliance with experimental protocol.
• Attrition.

Most Common Threats to External Validity
• Non-representative sample
• Non-representative program

▶ The treatment differs in actual implementations.
▶ Scale effects.
▶ Actual implementations are not randomized (nor full scale).



Discussion and Final Remarks

Analysis and Falsification of Randomized Experiments

• Covariate Balance.

▶ Randomization balances observed but also unobserved characteristics
between treatment and control group.

▶ Can check random assignment using so called “balance tests” (e.g., t-tests)
to see if distributions of the observed covariates, X, are the same in the
treatment and control groups.

▶ X are pre-treatment variables that are measured prior to treatment
assignment (i.e., at “baseline”).

• Placebo Analysis.

▶ Treatment does not affect all possible outcomes.

▶ Can be used to check credibility of research designs.



Part 2:

Introduction to Regression Discontinuity Designs



Overview

The RD Design: Definition and Taxonomy

• Basic setup

• Local Nature of Effects

• Graphical illustration of RD models



Causal Inference

• Main goal: learn about treatment effect of policy or intervention

• If treatment randomization available → easy to estimate effects

• If treatment randomization not available → observational studies
▶ Selection on observables
▶ Instrumental variables, etc.

• Regression discontinuity (RD) design

▶ Simple assignment, based on known external factors

▶ Objective basis to evaluate assumptions

▶ Careful: very local!



Regression Discontinuity Design

Defined by the triplet: score, cutoff, treatment.

• Units receive a score.

• A treatment is assigned based on the score and a known cutoff.

• The treatment is:
▶ given to units whose score is greater than the cutoff.
▶ withheld from units whose score is less than the cutoff.

• Under assumptions, the abrupt change in the probability of treatment
assignment allows us to learn about the effect of the treatment.

• Some examples:

Xi Yi

Education: entry test score test score, enrollment, performance, etc

Development: pov index educ, labor, health, etc

Health: age / birthdate insurance coverage, mortality, etc.
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Treatment Assignment in (Sharp) RD Design
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Sharp Regression Discontinuity Design

• n units, indexed by i = 1, 2, . . . , n

• Unit’s score is Xi, treatment is Ti = 1(Xi ≥ c)

• Each unit has two potential outcomes:

Yi(1): outcome that would be observed if i received treatment
Yi(0): outcome that would be observed if i received control

• The observed outcome is

Yi =

{
Yi(0) if Xi < c,
Yi(1) if Xi ≥ c.

• Fundamental problem of causal inference: only observe Yi(0) for units
below cutoff and only observe Yi(1) for units above cutoff



RD Treatment Effect in Sharp RD Design
τSRD = E[Yi(1)− Yi(0)|Xi = ]̧
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Fundamental Missing Data Problem

• A special situation occurs at the cutoff X = c, the only point at which we
may “almost” observe both curves

• Imagine two groups of units:

with score equal to c, Xi = c → treated
with with score barely below c, X = c − ε → control

• Yet if values of the average potential outcomes at c are not abruptly
different from their values at points near c, these two sets of units would
be identical except for their treatment status

• Vertical distance at c: the average treatment effect at this point

• This is the feature on which all RD designs are based



τSRD = E[Yi(1)− Yi(0)|Xi = c]
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τSRD = E[Yi(1)− Yi(0)|Xi = c]︸ ︷︷ ︸
Unobservable

= lim
x↓c

E[Yi|Xi = x]− lim
x↑c
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τSRD = E[Yi(1)− Yi(0)|Xi = c]︸ ︷︷ ︸
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Sharp RD design: Summary

• Canonical Parameter:

τSRD = E[Yi(1)− Yi(0)|Xi = c] = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]

• Perfect compliance:

▶ every unit with score above c receives treatment.
▶ every unit with score below c receives control.

• Not a “causal parameter” in the “proper” sense.

• Lee (2008) interpretation:

τSRD =

∫
(y+1 (w)− y+0 (w))

fX|W(c|w)
fW(w)

dw

• Different interpretation under “local randomization”.



Example: Incumbency Advantage in U.S. Senate

• Problem: incumbency advantage in the U.S. Senate.

• Single-member district elections + two party system.

• Democratic party
▶ runs for election t in state i and gets vote share Xi.
▶ wins the election if vote share is 50% or more, Xi ≥ 50.
▶ loses the election if vote share is less than 50%.

• Outcome of interest: vote share in following election t + 1, Yi.

• Fundamental problem of causal inference: only observe Democratic’s
vote share at t + 1 when the Democratic Party is incumbent in those
districts where Democrats won election t.

• Cattaneo, Frandsen & Titiunik (2015, JCI).



Example: Incumbency Advantage in U.S. Senate

• Problem: incumbency advantage (U.S. senate).

• Data:

Yi = election outcome at t + 1.

Ti = whether party wins election at t .

Xi = margin of victory at t (c = 0).

Zi = covariates (demvoteshlag1, demvoteshlag2, dopen, etc.).

• Potential outcomes:

Yi(0) = election outcome at t + 1 if had not been incumbent.

Yi(1) = election outcome at t + 1 if had been incumbent.

• Causal Inference:

Yi(0) ̸= Yi|Ti = 0 and Yi(1) ̸= Yi|Ti = 1



Local Nature of RD Effects

• RD parameters can be interpreted as causal in the sense that they are
based on a comparison of potential outcomes—Yi(1) and Yi(0).

• But, in contrast to other parameters, average treatment effect is calculated
at a single point on support of continuous random variable (Xi).

• This results in RD treatment effects having limited external validity:

▶ τSRD, the average treatment effect at c, may not be informative about
treatment effect at values of x ̸= c.

• Absent specific assumptions about global shape of regression functions,
RD effects are average treatment effects local to the cutoff.

• How much can be learned from such local treatment effects will depend
on each particular application.



The RD Parameter: No Heterogeneity
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The RD Parameter: Mild Heterogeneity
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The RD Parameter: Wild Heterogeneity
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Part 3:

Graphical illustration of RD models



RD Packages

https://rdpackages.github.io/

• rdrobust: estimation, inference and graphical presentation using local
polynomials, partitioning, and spacings estimators; bandwidth selection.

• rdlocrand package: covariate balance, binomial tests, randomization
inference methods (window selection & inference).

• rddensity: discontinuity in density test at cutoff (a.k.a. manipulation
testing) using novel local polynomial density estimator.

• rdmulti: RD plots, estimation, inference, and extrapolation with
multiple cutoffs and multiple scores.

• rdpower : power calculation and sample selection for local polynomial
methods.

https://rdpackages.github.io/
https://rdpackages.github.io/rdrobust
https://rdpackages.github.io/rdlocrand
https://rdpackages.github.io/rddensity
https://rdpackages.github.io/rdmulti
https://rdpackages.github.io/rdpower


Graphical illustration of RD models

• Appealing feature of RDD: it can be illustrated graphically.

• Combined with formal approaches to estimation and inference, adds
transparency to the analysis.

• Scatter plot: limited effectiveness for visualizing RD design.

• Usually useful to aggregate or smooth the data before plotting.



Graphical illustration of RD models

• Typical RD plot:
▶ global polynomial fit
▶ local sample means

(i) Global fit: smooth approximation to the unknown regression functions
▶ 4th or 5th order polynomials, separately above and below the cutoff.

(ii) Local sample means:
▶ disjoint intervals (bins) of the score, calculating the mean of the outcome

within each bin.

• Combination of (i) and (ii) allows for:
▶ visualize the overall shape of the regression functions for T and C
▶ retain information about local behavior of the data



Graphical illustration of RD models

• Two types of bins:
▶ Evenly-spaced
▶ Quantile-spaced

• How to choose the number of bins optimally:
▶ Tracing out the regression function: IMSE (balances bias and variance)
▶ Mimicking Variance



Empirical Illustration:
Head Start (Ludwig and Miller, 2007,QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

Yi = child mortality 5 to 9 years old

Ti = whether county received Head Start assistance

Xi = 1960 poverty index (c = 59.1984)

Zi = see database.

• Potential outcomes:

Yi(0) = child mortality if had not received Head Start

Yi(1) = child mortality if had received Head Start

• Causal Inference:

Yi(0) ̸= Yi|Ti = 0 and Yi(1) ̸= Yi|Ti = 1

• See Cattaneo, Titiunik and Vazquez-Bare (2017, JPAM) for details.



Effect of Head Start Assistance on Child Mortality



Part 4:

RD Designs: Local Polynomial Analysis



RD software: https://rdpackages.github.io

• rdrobust: estimation, inference and graphical presentation using local polynomials,
partitioning, and spacings estimators.

rdrobust: RD inference (point estimation and CI; classic, BC, robust).

rdbwselect: bandwidth or window selection (MSE, CE, etc.).

rdplot: plots data with “optimal" bin length.

• rddensity: test continuity of density at cutoff using novel local polynomial

estimation method. Main command: rddensity.

• rdlocrand: covariate balance, binomial tests, randomization inference methods for
window selection & inference.

rdrandinf: inference using randomization inference methods.

rdwinselect: falsification testing and window selection.

rdrbounds; rdsensitivity: Rosenbaum bounds and sensitivity analyses

• rdpower: power calculation and sample selection for local polynomial methods.

• rdmulti: RD plots, estimation, inference, and extrapolation with multiple cutoffs and

multiple scores.

https://rdpackages.github.io/rdpackages
https://rdpackages.github.io/rdrobust
https://rdpackages.github.io/rddensity
https://rdpackages.github.io/rdlocrand
https://rdpackages.github.io/rdpower
https://rdpackages.github.io/rdmulti


τ = E[Y1i − Y0i|Xi = x0]︸ ︷︷ ︸
Unobservable

= lim
x↓x0

E[Yi|Xi = x]︸ ︷︷ ︸
Observable

− lim
x↑x0

E[Yi|Xi = x]︸ ︷︷ ︸
Observable

E[Y(1)|X]

E[Y(0)|X]

Cutoff

µ+

µ−

τSRD
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Standard RD: Treatment Effect Estimation

• E[Yi|Xi = x] approximated in neighborhood of x0 by polynomial function

• Local polynomial estimation:
▶ Choose order of polynomial p

▶ Choose bandwidth h to keep observations in [x0 − h, x0 + h]

▶ Choose kernel function to weigh observations, wi = K( xi−x0
h )



Local Polynomial Estimation
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Local Polynomial Estimation
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Local Polynomial Estimation
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Local Polynomial Estimation
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Local Polynomial Estimation

Cutoff

µ̂1

c−h c c+h
Score X

O
ut

co
m

es
 Y

(0
),Y

(1
)



Local Polynomial Estimation

Cutoff

µ̂1

µ̂0

c−h c c+h
Score X

O
ut

co
m

es
 Y

(0
),Y

(1
)



Local Polynomial Estimation

E[Y(1)|X]
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RD Local Polynomial Estimation and Inference

Choose low p and a kernel function K(·)

Choose bandwidth h: MSE-optimal or CER-optimal

Construct point estimator τ̂n (optimal)

Given above steps, how do we make inferences about τ?



Choice of Kernel Weights

Local Neighborhood
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c − h c c + h
Score X

K
er

ne
l W

ei
gh

ts Epanechnikov

Uniform

Triangular



Choice of Polynomial Order (p)

• The higher p, the more flexible the approximation

• However, since approximation is local, p should be low to avoid
overfitting

• Given p, approximation can be improved by focusing on a smaller
neighborhood around the cutoff

• Standard practice is to choose p = 1 (“local linear”)



Approximation for fixed p = 1

Cutoff
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Approximation for fixed p = 1

Cutoff

E[Y(1)|X]
E[Y(0)|X]

c − h2 c − h1 c c + h1 c + h2

Score X

E
[Y

(1
)|
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Choice of Bandwidth

• Given p, find h to ensure optimal properties of the point estimator ˆτRD

• MSE-optimal plug-in rule:

MSE( ˆτRD) = Bias2 + Variance ≈ h2(p+1)B2 +
1

nh
V

hMSE = C1/(2p+3)
MSE · n−1/(2p+3) CMSE = C(K) · Var(τ̂SRD)

Bias(τ̂SRD)2

• Key idea: trade-off bias and variance of point estimator τ̂

↑ Bias(τ̂) =⇒↓ ĥ and ↑ Var(τ̂) =⇒↑ ĥ

• Kernel function gives higher weight to observations close to cutoff.

• In the context of MSE-optimal h, triangular kernel is optimal



Choice of Bandwidth

• Coverage Error Rate (CER) optimal plug-in rule,

hCER = n−
p

(3+p)(3+2p) × hMSE

• Key idea: choose optimal bandwidth rate to minimize coverage error of
the RBC confidence intervals.



Conventional Local Polynomial Point Estimation

• “Local-linear” estimator (w/ weights K(·)):

−hn ≤ Xi < c : c ≤ Xi ≤ hn :

Yi = α0 + (Xi − c) · β0 + ε0,i Yi = α1 + (Xi − c) · β1 + ε1,i

• RD effect: τ̂n = α̂1 − α̂0

• When choosing MSE-optimal h, this point estimator τ̂n is optimal (also
consistent)



Conventional Local Polynomial RD Inference

• RD effect: τ̂n = α̂1 − α̂0

• Once τ̂n is estimated with optimal h, we might be tempted to use
conventional (OLS) inference

• Construct usual t-statistic. For H0 : τ = 0,

T =
τ̂n√
Vn

=
α̂1 − α̂0√
V1,n + V0,n

→d N (0, 1)

• 95% Confidence interval:

CI =
[
τ̂n ± 1.96 ·

√
Vn

]



Conventional Local Polynomial RD Inference

• However, with conditions on hn → 0, the distributional approximation

T =
τ̂n√
Vn

→d N (Bn, 1) ̸= N (0, 1)

▶ Bias Bn in RD point estimator captures “curvature” of regression functions
▶ In particular, the bias Bn occurs when the MSE-optimal bandwidth is used

• Conventional approach → assume bias negligible or undersmoothing

T = τ̂n√
Vn

→d N (0, 1) CI =
[
τ̂n ± 1.96 ·

√
Vn

]
=⇒ Not clear guidance & power loss!

• Bias-correction approach

Tbc = τ̂n−Bn√
Vn

→d N (0, 1) CIbc =
[ (

τ̂n − B̂n

)
± 1.96 ·

√
Vn

]
=⇒ Poor finite sample properties!



Robust Local Polynomial Inference

• Key observation: B̂n is constructed to estimate leading bias

Tbc =
τ̂n − B̂n√

Vn
=

τ̂n − Bn√
Vn︸ ︷︷ ︸

→d N (0,1)

+
Bn − B̂n√

Vn︸ ︷︷ ︸
→p 0

• Our robust approach → Non-standard Asymptotics

Tbc =
τ̂n − B̂n√

Vn
=

τ̂n − Bn√
Vn︸ ︷︷ ︸

→d N (0,1)

+
Bn − B̂n√

Vn︸ ︷︷ ︸
→d N (0,γ)

• Robust Bias-Correction Approach:

Trbc =
τ̂n − B̂n√
Vn + Wn

→d N (0, 1)

CIrbc =
[ (

τ̂n − B̂n

)
± 1.96 ·

√
Vn + Wn

]



Robust Local Polynomial Inference

• Highlights conceptual distinction between estimation and inference

• Conventional procedure to derive confidence intervals:
▶ Derive asymptotic normal distribution of t statistic T = (β̂ − β)/std.err
▶ Build confidence intervals as the dual of T: β̂ ± 1.96 × std.err

• General underlying idea
▶ Choose statistic and obtain (asymptotic) distribution
▶ Build confidence intervals as collection of all hypotheses not rejected by it
▶ Point estimator (if it exists) need not be the center of the confidence

interval

• RD robust CI
▶ Alternative statistic (τ̂n − τ − B̂n)/

√
Vn + Wn

▶ CIrbc =
[ (

τ̂n − B̂n

)
± 1.96 ·

√
Vn + Wn

]
▶ Not centered at point estimator τ̂n, and rescaled (different variance

estimator)



Table: Local Polynomial Confidence Intervals

Centered at Standard Error

Conventional: CIus τ̂SRD
√

V̂

Bias Corrected: CIbc τ̂SRD − B̂
√

V̂

Robust Bias Corrected: CIrbc τ̂SRD − B̂

√
V̂bc



Confidence Intervals for Different Bandwidths
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Robust

τ

h1 h2 h3 h4 h5 h6 hCE h8 hMSE h10 h11 h12 h13

Bandwidth (h)
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Part 5:

RD Local Randomization Methods



Overview

• Local randomization and randomization inference methods.

▶ Interpreting RD as a local randomization in a window around the cutoff

▶ Conceptual differences with local polynomial estimation

▶ Window selection

▶ Estimation and inference using randomization-based methods



Recap: Continuity-based Approach

• Assume regression functions are continuous to obtain

τSRD = E[Yi(1)− Yi(0)|Xi = c] = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]

▶ Approximates regression function and relies on continuity assumptions.

▶ Requires: choosing weights, bandwidth and polynomial order.

• Alternative: local randomization approach



Analogies with experiments

• Lee (2008): RD design can be as credible as a randomized experiment
for units very near cutoff

• Imagine that score depends on each unit’s unobservables characteristics
and choices

• If the two following conditions hold:

there is a random chance element to score that unit receives
probability of this random “error” doesn’t change abruptly at cutoff

• Then the RD design can be seen as an experiment:

units barely above the cutoff as-if randomly assigned to treatment
units barely above the cutoff as-if randomly assigned to control

• This fails if individuals have ability to exactly control their score



Analogies with experiments

• Consider an RD Design where:

treatment is assigned based on score exceeding cutoff
units lack ability to manipulate score (continuity holds)

• Crucial distinction:

Experiment → no need to make assumptions about shape of the average
potential outcomes
RD design → inferences depend crucially on assumptions regarding
functional form of regression functions

• Any experiment can be recast as an RD design where

score is a uniform random variable
cutoff chosen to ensure a given probability of treatment
Ex: each student assigned uniform random number between 0 and 100,
scolarship given to students whose score is above 50



Randomized Experiment

Cutoff

Average Treatment Effect
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E[Y(1)|X]
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Experiment versus RD Design

Cutoff

Average Treatment Effect
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c
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(a) Randomized Experiment
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(b) RD Design



If as-if random interpretation is true:
Local Randomization RD

E[Y(1)|X]

E[Y(0)|X]

Cutoff

RD Treatment Effect

c−w c c + w
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Local Randomization Approach to RD Design

• Gives an alternative that can be used as a robustness check.

• Key assumption: exists window W = [−w,w] around cutoff
(−w < c < w) where (assuming random potential outcomes)

Ti independent of (Yi(0),Yi(1)) (for all Xi ∈ W)

• Thus, inside W0 subjects are as-if randomly assigned to either side of
cutoff

▶ The distribution of running variable same for all units inside W0

▶ Potential outcomes in W0 depend on running variable only through
threshold indicators within W0

• Stronger than Continuity-Based Approach⇒ Relevant population
functions are not only continuous at x0, but also completely unaffected
by the running variable in W0



Local Randomization Approach to RD Design

Under Fisherian framework, with W0 = [c − w, c + w], local randomization
assumption is:

• The distribution of the running variable in the window W0, FXi|Xi∈W0(x),
is known, is the same for all units, and does not depend on the potential
outcomes: FXi|Xi∈W0(x) = F(x)

• Inside W0, the potential outcomes depend on the running variable solely
through the treatment indicator Ti = 1(Xi ≥ c) but not directly:
Yi(Xi,Ti) = Yi(Ti) for all i such that Xi ∈ W0

Under both conditions, inside W0, placement above/below cutoff is unrelated
to potential outcomes and potential outcomes unrelated to score



If as-if random interpretation is true:
Local Randomization RD

E[Y(1)|X]

E[Y(0)|X]

Cutoff
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Local Randomization Approach to RD Design

• In window W0, subjects randomly assigned to either side of cutoff:
▶ Window W0

▶ Assignment mechanism

• If assignment mechanism and W0 are known, RD becomes an experiment
in W0

• If few units inside W0, adopt a Fisherian setup: potential outcomes are
fixed, only randomness is in the assignment of subjects



Local Randomization Approach Using Fisherian Methods

• Approach has two steps:

▶ Step 1: Choose window around cutoff where randomization holds

▶ Step 2: Apply randomization inference tools, given a hypothesized
treatment assignment, within W0



Step 1: Choose the window W0

• How to choose window?

▶ Use balance tests on pre-determined/exogenous covariates.

▶ Very intuitive, easy to implement.



Window Selector Based on Covariate Balance in Locally
Random RD

E[Z|X]

Cutoff

W6
W5
W4
W3
W0
W2
W1

H0 is trueH0 is false H0 is false

−w6 −w5 −w4 −w3 −w0 −w1 c w1 w0 w3 w4 w5 w6

Score X

E
[V

|X
]



Step 2: Use Randomization Inference Tools within W0

• Under this framework, we can treat observations within the window W0
as if generated by a randomized experiment

• One possible randomization mechanism:

▶ Ti is Bernoulli with parameter π: for all for all vectors t in ΩW0 ,
Pr (TW0 = t) = πt′1 (1 − π)

(1−t)′1

▶ Since π is unknown, we estimate it π̂ =
T′

W0
1

nW0

• Another possible randomization mechanism:

▶ Fix number of treated units within the window at mW0 , which leads to
Pr (TW0 = t) = 1

(nW0
mW0

)
for all t ∈ ΩW0



Step 2: Use Randomization Inference Tools within W0

• Given local random assumption, can test sharp null hypothesis of no
treatment effect for any i

• Under this hypothesis, observed outcomes are fixed regardless of
realization of TW0 : yi (t) = yi for all i within W0 and for all t ∈ ΩW0

• Thus, the distribution of any test statistic Q(TW0 , yW0) is known, since it
depends only on the known distribution of TW0

• One-sided significance level:

Pr (Q(TW0 , yW0) ≥ Q(tW0 , yW0)) =
∑
t∈˙W

1 (Q(t, yW0) ≥ Q(tW0 , yW0)) Pr (TW0 = t)

• Different test statistics may be used



Empirical Illustration 1: Incumbency Advantage (CFT,
2015, JCI)

• Problem: incumbency advantage (U.S. senate).

• Data:

Yi = election outcome at t + 1.

Ti = whether party wins election at t .

Xi = margin of victory at t (c = 0).

Zi = covariates (demvoteshlag1, demvoteshlag2, dopen, etc.).

• Potential outcomes:

Yi(0) = election outcome at t + 1 if had not been incumbent.

Yi(1) = election outcome at t + 1 if had been incumbent.

• Causal Inference:

Yi(0) ̸= Yi|Ti = 0 and Yi(1) ̸= Yi|Ti = 1



Window Selection Based on Covariates, CFT
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Continuity-Based vs Local Randomization Analysis, CFT
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Part 5:

Fuzzy RD Designs



Treatment Assignment in (Sharp) RD Design
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Sharp Regression Discontinuity Design

• n units, indexed by i = 1, 2, . . . , n

• Unit’s score is Xi, treatment is Ti = 1(Xi ≥ c)

• Each unit has two potential outcomes:

Yi(1): outcome that would be observed if i received treatment
Yi(0): outcome that would be observed if i received control

• The observed outcome is

Yi =

{
Yi(0) if Xi < c,
Yi(1) if Xi ≥ c.

• Fundamental problem of causal inference: only observe Yi(0) for units
below cutoff and only observe Yi(1) for units above cutoff



RD Treatment Effect in Sharp RD Design
τSRD = E[Yi(1)− Yi(0)|Xi = c]
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Fuzzy RD Design

• Imperfect compliance:

▶ Probability of treatment changes at c, but not necessarily from 0 to 1
▶ Some units with score above c may decide not to take up treatment
▶ Example: voting eligibility at 18

• Ti is treatment assigned, Di is treatment taken

• Now for some units Ti ̸= Di

• Treatment taken has two potential values, Di(1) and Di(0), and observed
treatment taken is Di = Ti · Di(1) + (1 − Ti) · Di(0)

• Four potential outcomes instead of two:
Yi(1,Di(1)) = Di(1)Yi(1, 1) + (1 − Di(1))Yi(1, 0)
Yi(0,Di(0)) = Di(0)Yi(0, 1) + (1 − Di(0))Yi(0, 0).



Conditional Probability of Receiving Treatment
Sharp vs. Fuzzy RD Designs
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(a) Sharp RD
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(b) Fuzzy RD (One-Sided)



Fuzzy RD Design

• Interest in both the effect of being assigned to treatment (i.e., the effect
of T) and the effect of actually receiving treatment (i.e., the effect of D)

• Since treatment assignment cannot be changed, compliance with the
assignment is always perfect. Thus, analysis of the effect of T follows a
Sharp RD design

• In contrast, the study of the effect of D requires modifications and
additional assumptions



Fuzzy RD Design: Continuity-based parameters

• The Sharp RD estimator of the effect of Ti on Yi consistently estimates
the quantity

τY := lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]

= lim
x↓c

E[Yi(1,Di(1))|Xi = x]− lim
x↑c

E[Yi(0,Di(0))|Xi = x]

where the equality follows from the more general definition of the
observed outcome as Yi = TiYi(1,Di(1)) + (1 − Ti)Yi(0,Di(0)), and
thus requires no special assumptions.



Fuzzy RD Design: Intention-to-treat

• Assuming continuity of E[Yi(1,Di(1))|Xi = x] and
E[Yi(0,Di(0))|Xi = x], seen as functions of x, at the cutoff c, we have

τY = τITT , τITT := E[Yi(1,Di(1))− Yi(0,Di(0))|Xi = c],

and thus estimated jump in the average observed outcome at the cutoff
recovers the average effect of T on Y at c.

• τITT is usually called average “intention-to-treat" effect, and it captures
effect (at the cutoff) of being assigned to treatment

• This parameter is different from Sharp RD parameter τSRD under perfect
compliance,

τSRD = E[Yi(1)− Yi(0)|Xi = c]



Fuzzy RD Design: Intention-to-treat

• Perfect compliance is a particular case where
▶ P[Di(0) = 0|Xi = x] = 1 for x < c and P[Di(1) = 1|Xi = x] = 1 for x ≥ c
▶ Di = Ti = 1(Xi ≥ c)
▶ Yi(1, 1) := Yi(1) and Yi(0, 0) := Yi(0)

• Thus, when compliance is perfect, the RD ITT effect of the treatment
assignment on the outcome is equivalent to the Sharp RD effect of the
treatment received:

τITT = E[Yi(1)− Yi(0)|Xi = c]

• But when some units are non-compliers, τITT captures the effect of the
treatment assignment, which will be in general different from the effect
of actually receiving the treatment



Fuzzy RD Design: First Stage

• Fuzzy analysis includes study of how the RD assignment rule affects the
probability of receiving the treatment.

• Treating Di as the outcome, a Sharp RD strategy estimates

τD := lim
x↓c

E[Di|Xi = x]− lim
x↑c

E[Di|Xi = x]

• Since Di is binary, τD captures the difference in the probability of
receiving the treatment between units assigned to treatment vs. assigned
to control, at the cutoff.



Fuzzy RD Design: First Stage

• Assuming continuity at c of E[Di(1)|Xi = x] and E[Di(0)|Xi = x], seen
as functions of x, we have

τD = τFS , τFS := E[Di(1)− Di(0)|Xi = c]

and thus can interpret τD as the causal effect of Ti on Di.

• τFS captures the effect of assigning the treatment on receiving the
treatment for units with scores near or at the cutoff, usually called
“first-stage” effect.



Fuzzy RD Design: Estimation of FS and ITT effects

• Since both τFS and τITT are Sharp RD parameters, analysis follows
standard continuity-based Sharp RD methods, using Xi as running
variable, Ti = 1(Xi ≥ c) as treatment of interest, and Di and Yi as
outcomes:

τ̂ITT = lim
x↓c

Ê[Yi|Xi = x]− lim
x↑c

Ê[Yi|Xi = x]

τ̂FS = lim
x↓c

Ê[Di|Xi = x]− lim
x↑c

Ê[Di|Xi = x],

with bandwidth selection and inference methods as discussed before.



Fuzzy RD Design: Effect of Actual Treatment

• When interest is on the effect of the treatment received, it is common to
focus on

τFRD :=
τY
τD

• We call τFRD the “fuzzy RD parameter.”

• (Under the augmented continuity conditions for ITT effects, τFRD = τITT
τFS

.
This interpretation of the Fuzzy RD parameter as ratio of two ITT effects
is analogous to result in IV literature. Below we do not assume that these
conditions hold.)



Fuzzy RD Design: Effect of Actual Treatment

Explore conditions under which τFRD can be directly interpreted as the
average treatment effect of the treatment for some subpopulations.

• Non-zero first stage: τFS must be nonzero—ideally, well-separated from
zero: Moving above/below the cutoff must induce some units to actually
take the treatment.

• Exclusion Restriction: the treatment assignment must affect the
potential outcomes and potential treatments only via the treatment
received, but not directly: E[Yi(Ti, 0)|Xi = x] and E[Yi(Ti, 1)|Xi = x]
must be continuous in x at c.

• Compliance Restriction: many possibilities, including

▶ Local independence: potential outcomes independent of potential
treatments near the cutoff (Hahn, Todd, and vanderKlaauw, 2001).

▶ Monotonicity: there are no units who receive the opposite treatment to the
one they are assigned near the cutoff (i.e., no “defiers”).



Fuzzy RD Design

Interpretation of τFRD will differ according to which assumptions we are
willing to make. For example,

• Under local independence

τFRD = E[Yi(1, 1)− Yi(0, 0)|Xi = c]

• Under monotonicity

τFRD = E[Yi(1, 1)− Yi(0, 0)|Xi = c, i is a complier]



Important Issues for Implementation of Fuzzy RD
analysis

• Falsification: density test and covariates effects should focus on
intention-to-treat effects.

• Bandwidth Selection: two bandwidths if focus on ITT and FS effects,
single bandwidth if focus on Fuzzy RD effect.

• Weak Assignment: Avoid analyzing Fuzzy RD effects when the RD
assignment rule has weak effect on the adoption of the treatment.



Empirical Example

• Study by Londoño-Vélez, Rodríguez, and Sánchez (AEJ, 2020) on the
effects Ser Pilo Paga (SPP), a governmental program in Colombia that
funds full tuition to attend higher education institutions (HEIs).

• To be eligible, students must score in top 9 percent of scores in national
high school exit exam (“SABER 11” score), and must come from a
household with wealth index below a region-specific threshold
(“SISBEN” wealth score).

• Focus on students who took the SABER 11 test in the fall of 2014.

• Transform this two-dimensional RD design into one-dimensional design:
only students whose SABER 11 score is above cutoff.

• Score: difference between student’s SISBEN wealth index and respective
cutoff.

• Cutoff: normalized to zero.

• Treatment assignment (T): an indicator equal to one if score below zero.
Treatment received (D): indicator equal to one if student received
subsidy.

• Outcome of interest: enrollment in a high-quality HEI.



Part 7:

Falsification Analysis for RD designs



Falsification Methods

• RD rule of treatment assignment is not by itself enough to guarantee that
continuity or local randomizations are met

• Qualitative information and quantitative falsification tests play crucial
role
▶ Qualitative information: were there mechanisms to appeal score? did

people change their score?
▶ Falsification: various statistical tests



Falsification Methods

• Density test of “sorting”: is number of observations below the cutoff
surprisingly different from number of observations above it?

• Treatment effect on
▶ Predetermined covariates
▶ Placebo outcomes

• Also: effect at different cutoffs, effect at different bandwidths, dougnout
hole



Falsification Methods: Density Test
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Falsification Methods: Tests on Predetermined Covariates
and Placebo Outcomes

• Continuity-based falsification:
▶ Test of continuity of density of the running variable
▶ Local polynomial effects with optimal banwidth
▶ Robust Inference
▶ CRUCIAL: each covariate/placebo outcome must have its own optimal

bandwidth

• Local randomization falsification:
▶ Within chosen window, density test
▶ Test that covariate and placebo outcome distributons are indistinguishable

for treated and control
▶ CRUCIAL: all tests are conducted within the same window for each

covariate/placebo outcome
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