import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torchvision import datasets, models, transforms
import torch.nn as nn
from torch.nn import functional as F
import torch.optim as optim
torch.__version__
'0.4.1'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
data_transforms = {
'train':
transforms.Compose([
transforms.Resize((224,224)),
transforms.RandomAffine(0, shear=10, scale=(0.8,1.2)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
]),
'validation':
transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
normalize
]),
}
image_datasets = {
'train':
datasets.ImageFolder('data/train', data_transforms['train']),
'validation':
datasets.ImageFolder('data/validation', data_transforms['validation'])
}
dataloaders = {
'train':
torch.utils.data.DataLoader(image_datasets['train'],
batch_size=32,
shuffle=True, num_workers=4),
'validation':
torch.utils.data.DataLoader(image_datasets['validation'],
batch_size=32,
shuffle=False, num_workers=4)
}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = models.resnet50(pretrained=True).to(device)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Sequential(
nn.Linear(2048, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 2)).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.fc.parameters())
def train_model(model, criterion, optimizer, num_epochs=3):
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
for phase in ['train', 'validation']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.detach() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(image_datasets[phase])
epoch_acc = running_corrects.float() / len(image_datasets[phase])
print('{} loss: {:.4f}, acc: {:.4f}'.format(phase,
epoch_loss.item(),
epoch_acc.item()))
return model
model_trained = train_model(model, criterion, optimizer, num_epochs=3)
Epoch 1/3 ---------- train loss: 0.5273, acc: 0.7291 validation loss: 0.3059, acc: 0.9000 Epoch 2/3 ---------- train loss: 0.2702, acc: 0.8934 validation loss: 0.2408, acc: 0.9200 Epoch 3/3 ---------- train loss: 0.2133, acc: 0.9121 validation loss: 0.2184, acc: 0.9200
torch.save(model_trained.state_dict(), 'models/pytorch/weights.h5')
model = models.resnet50(pretrained=False).to(device)
model.fc = nn.Sequential(
nn.Linear(2048, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 2)).to(device)
model.load_state_dict(torch.load('models/pytorch/weights.h5'))
validation_img_paths = ["data/validation/alien/11.jpg",
"data/validation/alien/22.jpg",
"data/validation/predator/33.jpg"]
img_list = [Image.open(img_path) for img_path in validation_img_paths]
validation_batch = torch.stack([data_transforms['validation'](img).to(device)
for img in img_list])
pred_logits_tensor = model(validation_batch)
pred_probs = F.softmax(pred_logits_tensor, dim=1).cpu().data.numpy()
fig, axs = plt.subplots(1, len(img_list), figsize=(20, 5))
for i, img in enumerate(img_list):
ax = axs[i]
ax.axis('off')
ax.set_title("{:.0f}% Alien, {:.0f}% Predator".format(100*pred_probs[i,0],
100*pred_probs[i,1]))
ax.imshow(img)