System
representing the entire U.S.¶Originally Contributed by: Clayton Barrows
This example demonstrates how to assemble a System
representing the entire U.S. using
PowerSystems.jl and the data assembled by
Xu, et. al.. We'll use the same tabular data parsing
capability demonstrated on the RTS-GMLC dataset.
using SIIPExamples
using PowerSystems
using TimeSeries
using Dates
using TimeZones
using DataFrames
using CSV
PowerSystems.jl links to some test data that is suitable for this example. Let's download the test data
println("downloading data...")
datadir = joinpath(dirname(dirname(pathof(SIIPExamples))), "US-System")
siip_data = joinpath(datadir, "SIIP")
if !isdir(datadir)
mkdir(datadir)
mkdir(siip_data)
tempfilename =
download("https://zenodo.org/record/3753177/files/USATestSystem.zip?download=1")
SIIPExamples.unzip(SIIPExamples.os, tempfilename, datadir)
end
config_dir = joinpath(
dirname(dirname(pathof(SIIPExamples))),
"script",
"2_PowerSystems_examples",
"US_config",
)
This is a big dataset. Typically one would only want to include one of the interconnects
available. Lets use Texas to start. You can set interconnect = nothing
if you want everything.
interconnect = "Texas"
timezone = FixedTimeZone("UTC-6")
initial_time = ZonedDateTime(DateTime("2016-01-01T00:00:00"), timezone)
There are a few minor incompatibilities between the data and the supported tabular data format. We can resolve those here.
First, PowerSystems.jl only supports parsing piecewise linear generator costs from tabular data. So, we can sample the quadratic polynomial cost curves and provide PWL points.
println("formatting data ...")
!isnothing(interconnect) && println("filtering data to include $interconnect ...")
gen = DataFrame(CSV.File(joinpath(datadir, "plant.csv")))
filter!(row -> row[:interconnect] == interconnect, gen)
gencost = DataFrame(CSV.File(joinpath(datadir, "gencost.csv")))
gen = innerjoin(gen, gencost, on = :plant_id, makeunique = true, validate = (false, false))
function make_pwl(gen::DataFrame, traunches = 2)
output_pct_cols = ["output_point_" * string(i) for i in 0:traunches]
hr_cols = ["heat_rate_incr_" * string(i) for i in 1:traunches]
pushfirst!(hr_cols, "heat_rate_avg_0")
pwl = DataFrame(repeat([Float64], 6), Symbol.(vcat(output_pct_cols, hr_cols)))
for row in eachrow(gen)
traunch_len = (1.0 - row.Pmin / row.Pmax) / traunches
pct = [row.Pmin / row.Pmax + i * traunch_len for i in 0:traunches]
#c(pct) = pct * row.Pmax * (row.GenIOB + row.GenIOC^2 + row.GenIOD^3)
c(pct) = pct * row.Pmax * (row.c1 + row.c2^2) + row.c0 #this formats the "c" columns to hack the heat rate parser in PSY
hr = [c(pct[1])]
[push!(hr, c(pct[i + 1]) - hr[i]) for i in 1:traunches]
push!(pwl, vcat(pct, hr))
end
return hcat(gen, pwl)
end
gen = make_pwl(gen);
gen[!, "fuel_price"] .= 1000.0; #this formats the "c" columns to hack the heat rate parser in PSY
There are some incomplete aspects of this dataset. Here, I've assigned some approximate minimum up/down times, and some minor adjustments to categories. There are better ways to do this, but this works for this script...
gen[:, :unit_type] .= "OT"
gen[:, :min_up_time] .= 0.0
gen[:, :min_down_time] .= 0.0
gen[:, :ramp_30] .= gen[:, :ramp_30] ./ 30.0 # we need ramp rates in MW/min
[
gen[gen.type .== "wind", col] .= ["Wind", 0.0, 0.0][ix] for
(ix, col) in enumerate([:unit_type, :min_up_time, :min_down_time])
]
[
gen[gen.type .== "solar", col] .= ["PV", 0.0, 0.0][ix] for
(ix, col) in enumerate([:unit_type, :min_up_time, :min_down_time])
]
[
gen[gen.type .== "hydro", col] .= ["HY", 0.0, 0.0][ix] for
(ix, col) in enumerate([:unit_type, :min_up_time, :min_down_time])
]
[
gen[gen.type .== "ng", col] .= [4.5, 8][ix] for
(ix, col) in enumerate([:min_up_time, :min_down_time])
]
[
gen[gen.type .== "coal", col] .= [24, 48][ix] for
(ix, col) in enumerate([:min_up_time, :min_down_time])
]
[
gen[gen.type .== "nuclear", col] .= [72, 72][ix] for
(ix, col) in enumerate([:min_up_time, :min_down_time])
]
At the moment, PowerSimulations can't do unit commitment with generators that have Pmin = 0.0
idx_zero_pmin = [
g.type in ["ng", "coal", "hydro", "nuclear"] && g.Pmin <= 0 for
g in eachrow(gen[:, [:type, :Pmin]])
]
gen[idx_zero_pmin, :Pmin] = gen[idx_zero_pmin, :Pmax] .* 0.05
gen[:, :name] = "gen" .* string.(gen.plant_id)
CSV.write(joinpath(siip_data, "gen.csv"), gen)
Let's also merge the zone.csv with the bus.csv and identify bus types
bus = DataFrame(CSV.File(joinpath(datadir, "bus.csv")))
!isnothing(interconnect) && filter!(row -> row[:interconnect] == interconnect, bus)
zone = DataFrame(CSV.File(joinpath(datadir, "zone.csv")))
bus = leftjoin(bus, zone, on = :zone_id)
bustypes = Dict(1 => "PV", 2 => "PQ", 3 => "REF", 4 => "ISOLATED")
bus.bustype = [bustypes[b] for b in bus.type]
filter!(row -> row[:bustype] != PowerSystems.BusTypes.ISOLATED, bus)
bus.name = "bus" .* string.(bus.bus_id)
CSV.write(joinpath(siip_data, "bus.csv"), bus)
We need branch names as strings
branch = DataFrame(CSV.File(joinpath(datadir, "branch.csv")))
branch = leftjoin(
branch,
DataFrames.rename!(bus[:, [:bus_id, :baseKV]], [:from_bus_id, :from_baseKV]),
on = :from_bus_id,
)
branch = leftjoin(
branch,
DataFrames.rename!(bus[:, [:bus_id, :baseKV]], [:to_bus_id, :to_baseKV]),
on = :to_bus_id,
)
!isnothing(interconnect) && filter!(row -> row[:interconnect] == interconnect, branch)
branch.name = "branch" .* string.(branch.branch_id)
branch.tr_ratio = branch.from_baseKV ./ branch.to_baseKV
CSV.write(joinpath(siip_data, "branch.csv"), branch)
The PowerSystems parser expects the files to be named a certain way. And, we need a "control_mode" column in dc-line data
dcbranch = DataFrame(CSV.File(joinpath(datadir, "dcline.csv")))
!isnothing(interconnect) && filter!(row -> row[:from_bus_id] in bus.bus_id, dcbranch)
!isnothing(interconnect) && filter!(row -> row[:to_bus_id] in bus.bus_id, dcbranch)
dcbranch.name = "dcbranch" .* string.(dcbranch.dcline_id)
dcbranch[:, :control_mode] .= "Power"
CSV.write(joinpath(siip_data, "dc_branch.csv"), dcbranch)
timeseries = []
ts_csv = ["wind", "solar", "hydro", "demand"]
plant_ids = Symbol.(string.(gen.plant_id))
for f in ts_csv
println("formatting $f.csv ...")
csvpath = joinpath(siip_data, f * ".csv")
csv = DataFrame(CSV.File(joinpath(datadir, f * ".csv")))
(category, name_prefix, label) =
f == "demand" ? ("Area", "", "max_active_power") :
("Generator", "gen", "max_active_power")
if !(:DateTime in names(csv))
DataFrames.rename!(
csv,
(names(csv)[occursin.("UTC", String.(names(csv)))][1] => :DateTime),
)
#The timeseries data is in UTC, this converts it to a fixed UTC offset
csv.DateTime =
ZonedDateTime.(
DateTime.(csv.DateTime, "yyyy-mm-dd HH:MM:SS"),
timezone,
from_utc = true,
)
delete!(csv, csv.DateTime .< initial_time)
csv.DateTime = Dates.format.(csv.DateTime, "yyyy-mm-ddTHH:MM:SS")
end
device_names = f == "demand" ? unique(bus.zone_name) : gen.name
for id in names(csv)
colname = id
if f == "demand"
if Symbol(id) in Symbol.(zone.zone_id)
colname = Symbol(zone[Symbol.(zone.zone_id) .== Symbol(id), :zone_name][1])
DataFrames.rename!(csv, (id => colname))
end
sf = sum(bus[string.(bus.zone_id) .== id, :Pd])
else
if Symbol(id) in plant_ids
colname = Symbol(gen[Symbol.(gen.plant_id) .== Symbol(id), :name][1])
DataFrames.rename!(csv, (id => colname))
end
sf = maximum(csv[:, colname]) == 0.0 ? 1.0 : "Max"
end
if String(colname) in device_names
push!(
timeseries,
Dict(
"simulation" => "DA",
"category" => category,
"module" => "InfrastructureSystems",
"type" => "SingleTimeSeries",
"component_name" => String(colname),
"name" => label,
"resolution" => 3600,
"scaling_factor_multiplier" => "get_max_active_power",
"scaling_factor_multiplier_module" => "PowerSystems",
"normalization_factor" => sf,
"data_file" => csvpath,
),
)
end
end
CSV.write(csvpath, csv)
end
timeseries_pointers = joinpath(siip_data, "timeseries_pointers.json")
open(timeseries_pointers, "w") do io
PowerSystems.InfrastructureSystems.JSON3.write(io, timeseries)
end
*.csv
files and .yaml
files¶describing the column names of each file in PowerSystems terms, and the PowerSystems data type that should be created for each generator type. The respective "us_decriptors.yaml" and "US_generator_mapping.yaml" files have already been tailored to this dataset.
println("parsing csv files...")
rawsys = PowerSystems.PowerSystemTableData(
siip_data,
100.0,
joinpath(config_dir, "us_descriptors.yaml"),
generator_mapping_file = joinpath(config_dir, "us_generator_mapping.yaml"),
)
System
¶Next, we'll create a System
from the rawsys
data. Since a System
is predicated on a
time series resolution and the rawsys
data includes both 5-minute and 1-hour resolution
time series, we also need to specify which time series we want to include in the System
.
The time_series_resolution
kwarg filters to only include time series with a matching resolution.
println("creating System")
sys = System(rawsys; config_path = joinpath(config_dir, "us_system_validation.json"));
sys
This all took reasonably long, so we can save our System
using the serialization
capability included with PowerSystems.jl:
to_json(sys, joinpath(siip_data, "sys.json"), force = true)
This notebook was generated using Literate.jl.