from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
Datascience Analysis Workflow Demonstration:
DataFrame
library to import excel sheets!pip install plotly-express -q
import pandas as pd; import numpy as np; import matplotlib.pyplot as plt
csv_file = '/content/drive/MyDrive/02_CONSULTING/ENERVA/enerva_plotly/Analysis 3 with calculation - Updated Hourly.csv'
data = pd.read_csv(csv_file)
data = data[['HDH','kW','CDH','kW.3']]
data
HDH | kW | CDH | kW.3 | |
---|---|---|---|---|
0 | 20.5 | 125.61 | 2.5 | 69.18 |
1 | 20.7 | 129.51 | 3.3 | 60.48 |
2 | 21.2 | 119.70 | 3.7 | 60.90 |
3 | 21.4 | 120.51 | 4.5 | 66.24 |
4 | 21.8 | 116.28 | 4.7 | 64.71 |
... | ... | ... | ... | ... |
6606 | 26.6 | 212.16 | NaN | NaN |
6607 | 26.8 | 206.37 | NaN | NaN |
6608 | 26.6 | 197.10 | NaN | NaN |
6609 | 26.4 | 194.61 | NaN | NaN |
6610 | 26.2 | 191.28 | NaN | NaN |
6611 rows × 4 columns
import plotly.express as px
fig = px.scatter(data, x="HDH", y="kW", trendline="ols", title="kW vs HDH")
fig.show()
fig = px.scatter(data, x="CDH", y="kW.3", trendline="ols", title="kW vs CDH")
fig.show()
csv3d_file = '/content/drive/MyDrive/02_CONSULTING/ENERVA/enerva_plotly/Analysis 3 with calculation - 3D.csv'
data_3d = pd.read_csv(csv3d_file)
data_3d['size'] = 0.001
data_3d
Hour | kW | Temp (°C) | size | |
---|---|---|---|---|
0 | 20 | 123.69 | 5.8 | 0.001 |
1 | 21 | 120.99 | 6.1 | 0.001 |
2 | 16 | 134.19 | 5.0 | 0.001 |
3 | 15 | 102.24 | 5.3 | 0.001 |
4 | 16 | 102.69 | 5.3 | 0.001 |
... | ... | ... | ... | ... |
1939 | 1 | 127.20 | 5.2 | 0.001 |
1940 | 2 | 120.24 | 5.7 | 0.001 |
1941 | 3 | 119.61 | 5.5 | 0.001 |
1942 | 4 | 116.64 | 5.1 | 0.001 |
1943 | 5 | 122.34 | 5.5 | 0.001 |
1944 rows × 4 columns
fig = px.scatter_3d(data_3d, x='Hour', y='kW', z='Temp (°C)', size = 'size')
fig.show()