In this tutorial we read the pair of images using imread
, compare them visually
and process using OpenPIV. Here the import is using directly the basic functions and methods
from openpiv import tools, pyprocess, validation, filters, scaling
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import imageio
frame_a = tools.imread( '../test1/exp1_001_a.bmp' )
frame_b = tools.imread( '../test1/exp1_001_b.bmp' )
fig,ax = plt.subplots(1,2,figsize=(12,10))
ax[0].imshow(frame_a,cmap=plt.cm.gray)
ax[1].imshow(frame_b,cmap=plt.cm.gray)
<matplotlib.image.AxesImage at 0x7f4012662b80>
winsize = 32 # pixels, interrogation window size in frame A
searchsize = 38 # pixels, search in image B
overlap = 12 # pixels, 50% overlap
dt = 0.02 # sec, time interval between pulses
u0, v0, sig2noise = pyprocess.extended_search_area_piv(frame_a.astype(np.int32),
frame_b.astype(np.int32),
window_size=winsize,
overlap=overlap,
dt=dt,
search_area_size=searchsize,
sig2noise_method='peak2peak')
x, y = pyprocess.get_coordinates( image_size=frame_a.shape,
search_area_size=searchsize,
overlap=overlap )
flags = validation.sig2noise_val( sig2noise,
threshold = 1.05 )
# if you need more detailed look, first create a histogram of sig2noise
# plt.hist(sig2noise.flatten())
# to see where is a reasonable limit
# filter out outliers that are very different from the
# neighbours
u2, v2 = filters.replace_outliers( u0, v0,
flags,
method='localmean',
max_iter=3,
kernel_size=3)
# convert x,y to mm
# convert u,v to mm/sec
x, y, u3, v3 = scaling.uniform(x, y, u2, v2,
scaling_factor = 96.52 ) # 96.52 microns/pixel
# 0,0 shall be bottom left, positive rotation rate is counterclockwise
x, y, u3, v3 = tools.transform_coordinates(x, y, u3, v3)
#save in the simple ASCII table format
tools.save('exp1_001.txt', x, y, u3, v3, flags)
fig, ax = plt.subplots(figsize=(8,8))
tools.display_vector_field('exp1_001.txt',
ax=ax, scaling_factor=96.52,
scale=50, # scale defines here the arrow length
width=0.0035, # width is the thickness of the arrow
on_img=True, # overlay on the image
image_name='../test1/exp1_001_a.bmp');
from openpiv import piv
piv.simple_piv(frame_a, frame_b);
piv.piv_example();
/home/user/.edm/envs/echopiv/lib/python3.8/site-packages/matplotlib/animation.py:887: UserWarning: Animation was deleted without rendering anything. This is most likely not intended. To prevent deletion, assign the Animation to a variable, e.g. `anim`, that exists until you have outputted the Animation using `plt.show()` or `anim.save()`. warnings.warn(