In the first section, we load an artificial two-phase PIV image and then use different phase separation methods to discriminate the two phases and save them as separate images. This section aims to introduce different methods that are available.
In the second section, we demonstrate phase separation on real images followed by actual PIV process as a more realistic example.
from openpiv import tools, phase_separation
import matplotlib.pyplot as plt
plt.gray()
<Figure size 432x288 with 0 Axes>
two_phase_image = tools.imread('../two_phase_piv/artificial_A.tif')
plt.figure(figsize=(10,10))
plt.imshow(two_phase_image)
plt.show()
big_particles_image, small_particles_image = phase_separation.opening_method( two_phase_image, 11, thresh_factor=1.05 )
fig, ax = plt.subplots(1, 2, figsize=(16,10))
ax[0].imshow( big_particles_image, vmin=0, vmax=255 )
ax[1].imshow( small_particles_image, interpolation='bicubic', vmin=0, vmax=255 )
plt.show()
big_particles_image, small_particles_image = phase_separation.median_filter_method(two_phase_image, 11)
fig, ax = plt.subplots(1, 2, figsize=(16,10))
ax[0].imshow( big_particles_image)
ax[1].imshow( small_particles_image, vmin=0, vmax=255 )
plt.show()
# Plot size distribution
plt.hist( phase_separation.get_particles_size_array(two_phase_image), 30)
plt.yscale('log')
plt.title('Particle size distribution')
plt.show()
# Choose size limit = 100
big_particles_criteria = {'min_size' : 75}
small_particles_criteria = {'max_size' : 75}
big_particles_image, small_particles_image = \
phase_separation.khalitov_longmire( two_phase_image, big_particles_criteria, small_particles_criteria )
fig, ax = plt.subplots(1, 2, figsize=(16,10))
ax[0].imshow( big_particles_image )
ax[1].imshow( small_particles_image )
plt.show()
# First plot size-brightness map
sb_map = phase_separation.get_size_brightness_map( two_phase_image ) # It is possible to sum over maps of multiple images
plt.figure(figsize=(10,8))
plt.imshow( sb_map, interpolation='nearest', aspect='auto', origin='lower', cmap='jet' )
plt.colorbar()
plt.xlabel('Brightness')
plt.ylabel('Size (px)')
plt.title('Signal density')
plt.show()
# size-brightness rectangle regions
big_particles_criteria = {
'min_size' : 100 ,'max_size' : 350 , 'min_brightness' : 100 , 'max_brightness' : 180 }
small_particles_criteria = {
'min_size' : 25 ,'max_size' : 100 , 'min_brightness' : 30 , 'max_brightness' : 100}
big_particles_image , small_particles_image = \
phase_separation.khalitov_longmire( two_phase_image, big_particles_criteria, small_particles_criteria )
fig, ax = plt.subplots(1, 2, figsize=(16,10))
ax[0].imshow( big_particles_image )
ax[1].imshow( small_particles_image )
plt.show()
raw_A = tools.imread('../two_phase_piv/real_A.tif')
raw_B = tools.imread('../two_phase_piv/real_B.tif')
fig, ax = plt.subplots(1, 2, figsize=(16,10))
ax[0].imshow( raw_A )
ax[1].imshow( raw_B )
plt.show()
solid_A, carrier_A = phase_separation.opening_method( raw_A, 7, thresh_factor=1.05 )
solid_B, carrier_B = phase_separation.opening_method( raw_B, 7, thresh_factor=1.05 )
fig, ax = plt.subplots(2, 2, figsize=(16,10))
ax[0,0].imshow( solid_A, vmin=0, vmax=255 )
ax[0,1].imshow( carrier_A, vmin=0, vmax=255 )
ax[1,0].imshow( solid_B, vmin=0, vmax=255 )
ax[1,1].imshow( carrier_A, vmin=0, vmax=255 )
plt.show()
from openpiv import tools, validation, filters, scaling, pyprocess
import numpy as np
winsize = 48 # pixels
searchsize = 128 # pixels, search in image B
overlap = 24 # pixels
dt = 20e-6 # sec
scaling_factor = 2500 # pixels/meter
u0, v0, sig2noise = pyprocess.extended_search_area_piv( carrier_A.astype(np.int32), carrier_B.astype(np.int32),
subpixel_method ='parabolic', window_size=winsize,
overlap=overlap, dt=dt, search_area_size=searchsize,
sig2noise_method='peak2peak' )
x, y = pyprocess.get_coordinates(carrier_A.shape,searchsize,overlap)
u1, v1, mask = validation.sig2noise_val( u0, v0, sig2noise, w=None, threshold=3.2 )
u2, v2 = filters.replace_outliers( u1, v1, method='localmean', max_iter=5, kernel_size=2 )
x, y, u3, v3 = scaling.uniform( x, y, u2, v2, scaling_factor=scaling_factor )
tools.save( x, y, u3, v3, sig2noise, mask, 'data.txt' )
tools.save( x[::5, ::5], y[::5, ::5], u3[::5, ::5], v3[::5, ::5],
sig2noise[::5,::5], mask[::5, ::5], 'preview.txt' )
fig, ax = plt.subplots(figsize=(16,10))
tools.display_vector_field( 'preview.txt', on_img=True,
image_name='../two_phase_piv/real_A.tif',
scaling_factor=scaling_factor, ax=ax )
/home/user/miniconda3/envs/openpiv/lib/python3.8/site-packages/matplotlib/quiver.py:670: RuntimeWarning: Mean of empty slice. amean = a.mean() /home/user/miniconda3/envs/openpiv/lib/python3.8/site-packages/numpy/core/_methods.py:170: RuntimeWarning: invalid value encountered in double_scalars ret = ret.dtype.type(ret / rcount)
(<Figure size 1152x720 with 1 Axes>, <AxesSubplot:>)
# Note that this is an over-simplified PTV code, just for demonstration.
# Please use OpenPTV or other PTV software for meaningful results.
%matplotlib inline
%config InlineBackend.close_figures=False
import numpy as np
from skimage.measure import label, regionprops
from scipy.spatial.distance import cdist
from IPython.display import clear_output
centers_A = np.asarray([ p.centroid for p in regionprops( label( solid_A > 2 * np.mean(solid_A))) ])
centers_B = np.asarray([ p.centroid for p in regionprops( label( solid_B > 2 * np.mean(solid_B))) ])
cross_distance = cdist( centers_B, centers_A )
PTV_X = []
PTV_Y = []
PTV_U = []
PTV_V = []
for i in range(1, len(centers_A)):
if np.min(cross_distance, 0)[i] < 5:
j = np.argmin(cross_distance, 0)[i]
PTV_X.append( centers_A[i,1]/scaling_factor )
PTV_Y.append( centers_A[i,0]/scaling_factor )
PTV_U.append( (centers_B[j,1] - centers_A[i,1])/(scaling_factor * dt) )
PTV_V.append( -(centers_B[j,0] - centers_A[i,0])/(scaling_factor * dt) )
PTV_X = np.asarray(PTV_X)
PTV_Y = np.asarray(PTV_Y)
PTV_U = np.asarray(PTV_U)
PTV_V = np.asarray(PTV_V)
width = solid_A.shape[1] / scaling_factor
height = solid_A.shape[0] / scaling_factor
fig2, ax2 = plt.subplots(figsize=(16,10))
ax2.imshow( solid_A, extent=[0, width, 0, height], origin='lower' )
tools.display_vector_field( 'preview.txt', scaling_factor=scaling_factor, ax=ax2 )
ax2.invert_yaxis()
ax2.quiver( PTV_X, PTV_Y, PTV_U, PTV_V, color='yellow', width=0.003)
ax2.invert_yaxis()
clear_output(wait=True)
plt.show()