Ensemble correlation should work in places where the flow is really steady and repeatable or could be phase averaged in the sense that the correlation map in a single interrogation window represents displacements from a statistically stationary distribution.
In such case, the noisy position of the correlation peak is due to randomness that can be averaged out like the white noise and the avergaging of the correlation maps will yield a high quality peak that has great signal to noise ratio and close to Gaussian
In this case the velocity estimate in the interrogation window will approach the mean velocity value at that location.
from openpiv.pyprocess import *
from openpiv.tools import *
from glob import glob
from pylab import *
imlist = glob('../test12/*.tif')
imlist.sort()
print(imlist)
['../test12/A001a.tif', '../test12/A001b.tif', '../test12/A002a.tif', '../test12/A002b.tif', '../test12/A003a.tif', '../test12/A003b.tif', '../test12/A004a.tif', '../test12/A004b.tif', '../test12/A005a.tif', '../test12/A005b.tif']
# just a quick look at the data
from openpiv.piv import simple_piv
simple_piv(imlist[0], imlist[1]);
corrs = []
for i,j in zip(imlist[::2],imlist[1::2]):
# print(i,j)
corrs.append(fft_correlate_strided_images(moving_window_array(imread(i),64,32),
moving_window_array(imread(j),64,32),
normalized_correlation=True))
corrs = np.array(corrs) # save also single image pair correlations
mean_correlation = corrs.mean(axis=0) # ensemble average
# Let's compare the result with instantaneous results
contourf(mean_correlation[23,:,:])
colorbar()
<matplotlib.colorbar.Colorbar at 0x7fe5e56f5070>
for i in range(corrs.shape[0]):
figure()
contourf(corrs[i,252,:,:])
colorbar()
im = imread(imlist[0])
im.shape
(1004, 992)
grid = get_field_shape(im.shape,search_area_size=64,overlap=32)
nrows, ncols = grid[0], grid[1]
u,v = correlation_to_displacement(mean_correlation, nrows, ncols)
x,y = get_coordinates(im.shape, 64, 32)
fig, ax = subplots(figsize=(8,8))
ax.quiver(x,y,u,v,scale=80,width=.003)
ax.invert_yaxis()
plot(u.mean(axis=1)*80+400,y[:,0])
[<matplotlib.lines.Line2D at 0x7fe5e1428940>]
# another way is the averaging of velocity fields
U = []
V = []
for i in range(corrs.shape[0]):
tmpu,tmpv = correlation_to_displacement(corrs[i,:,:,:], nrows, ncols)
U.append(tmpu)
V.append(tmpv)
fig, ax = subplots(figsize=(6,6))
ax.quiver(x,y,tmpu,tmpv,scale=200)
ax.invert_yaxis()
plot(tmpu.mean(axis=1)*80+400,y[:,0])
U = np.array(U)
V = np.array(V)
meanU = np.mean(U, axis=0)
meanV = np.mean(V, axis=0)
fig, ax = subplots(figsize=(8,8))
ax.quiver(x,y,meanU,meanV,scale=200)
ax.invert_yaxis()
plot(meanU.mean(axis=1)*80+400,y[:,0])
[<matplotlib.lines.Line2D at 0x7fe5e5346dc0>]