# %load red_Cell.py
from openpiv import tools, pyprocess, scaling, filters, \
validation, process
import numpy as np
import matplotlib.pyplot as plt
import imageio
from pylab import *
%matplotlib inline
from skimage import img_as_uint
frame_a = tools.imread('../test3/Y4-S3_Camera000398.tif')
frame_b = tools.imread('../test3/Y4-S3_Camera000399.tif')
# for whatever reason the shape of frame_a is (3, 284, 256)
# so we first tranpose to the RGB image and then convert to the gray scale
# frame_a = img_as_uint(rgb2gray(frame_a))
# frame_b = img_as_uint(rgb2gray(frame_b))
plt.imshow(np.c_[frame_a,frame_b],cmap=plt.cm.gray)
<matplotlib.image.AxesImage at 0x1225b1d50>
# Use Cython version: process.pyx
u, v, sig2noise = process.extended_search_area_piv( frame_a.astype(np.int32), frame_b.astype(np.int32), window_size=32, overlap=8, dt=.1, sig2noise_method='peak2peak' )
x, y = process.get_coordinates( image_size=frame_a.shape, window_size=32, overlap=8 )
u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.3 )
u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2)
x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 96.52 )
tools.save(x, y, u, v, mask, 'Y4-S3_Camera000398_a.txt' )
# Use Python version, pyprocess:
u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a.astype(np.int32), frame_b.astype(np.int32), window_size=32, overlap=8, dt=.1, sig2noise_method='peak2peak' )
x, y = pyprocess.get_coordinates( image_size=frame_a.shape, window_size=32, overlap=8 )
u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.3 )
u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2)
x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 96.52 )
tools.save(x, y, u, v, mask, 'Y4-S3_Camera000398_b.txt' )
# "natural" view without image
fig,ax = plt.subplots(2,1,figsize=(6,12))
ax[0].invert_yaxis()
ax[0].quiver(x,y,u,v)
ax[0].set_title(' Sort of natural view ')
ax[1].quiver(x,y,u,-v)
ax[1].set_title('Quiver with 0,0 origin needs `negative` v for display');
# plt.quiver(x,y,u,v)
tools.display_vector_field('Y4-S3_Camera000398_a.txt',on_img=True,image_name='../test3/Y4-S3_Camera000398.tif',scaling_factor=96.52)
<matplotlib.axes._subplots.AxesSubplot at 0x1225c6ed0>
tools.display_vector_field('Y4-S3_Camera000398_a.txt')
<matplotlib.axes._subplots.AxesSubplot at 0x1228a95d0>
tools.display_vector_field('Y4-S3_Camera000398_b.txt')
<matplotlib.axes._subplots.AxesSubplot at 0x1223e5990>
x,y,u,v, mask = process.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=32, overlap_ratio=0.25, coarse_factor=0, dt=0.1, validation_method='mean_velocity', trust_1st_iter=0, validation_iter=0, tolerance=0.7, nb_iter_max=1, sig2noise_method='peak2peak')
---------------------------------------------------------- |-----> || The Open Source P article | | Open || I mage | | PIV || V elocimetry Toolbox | | <-----|| www.openpiv.net version 1.0 | ---------------------------------------------------------- ('Algorithm : ', 'WiDIM') Parameters ----------------------------------- (' ', 'Size of image', ' | ', [284, 256]) (' ', 'total number of iterations', ' | ', 1) (' ', 'overlap ratio', ' | ', 0.25) (' ', 'coarse factor', ' | ', 0) (' ', 'time step', ' | ', 0.10000000149011612) (' ', 'validation method', ' | ', 'None') (' ', 'number of validation iterations', ' | ', 0) (' ', 'subpixel_method', ' | ', 'gaussian') (' ', 'Nrow', ' | ', array([11], dtype=int32)) (' ', 'Ncol', ' | ', array([10], dtype=int32)) (' ', 'Window sizes', ' | ', array([32], dtype=int32)) ----------------------------------- | STARTING | ----------------------------------- ('ITERATION # ', 0) ..[DONE] (' --residual : ', 1.000000045849729) Starting validation.. ..[DONE] ////////////////////////////////////////////////////////////////// end of iterative process.. Re-arranging vector fields.. ...[DONE] ------------------------------------------------------------- ('[DONE] ..after ', -33.58851504325867, 'seconds ') -------------------------------------------------------------
tools.save(x, y, u, v, zeros_like(u), 'Y4-S3_Camera000398_widim1.txt' )
x,y,u,v, mask = process.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=16, overlap_ratio=0.25, coarse_factor=2, dt=0.1, validation_method='mean_velocity', trust_1st_iter=1, validation_iter=2, tolerance=0.7, nb_iter_max=4, sig2noise_method='peak2peak')
---------------------------------------------------------- |-----> || The Open Source P article | | Open || I mage | | PIV || V elocimetry Toolbox | | <-----|| www.openpiv.net version 1.0 | ---------------------------------------------------------- ('Algorithm : ', 'WiDIM') Parameters ----------------------------------- (' ', 'Size of image', ' | ', [284, 256]) (' ', 'total number of iterations', ' | ', 4) (' ', 'overlap ratio', ' | ', 0.25) (' ', 'coarse factor', ' | ', 2) (' ', 'time step', ' | ', 0.10000000149011612) (' ', 'validation method', ' | ', 'mean_velocity') (' ', 'number of validation iterations', ' | ', 2) (' ', 'subpixel_method', ' | ', 'gaussian') (' ', 'Nrow', ' | ', array([ 5, 11, 23, 23], dtype=int32)) (' ', 'Ncol', ' | ', array([ 5, 10, 21, 21], dtype=int32)) (' ', 'Window sizes', ' | ', array([64, 32, 16, 16], dtype=int32)) ----------------------------------- | STARTING | ----------------------------------- ('ITERATION # ', 0) ..[DONE] (' --residual : ', 1.0000000125483464) no validation : trusting 1st iteration going to next iteration.. performing interpolation of the displacement field ('..[DONE] -----> going to iteration ', 1) ('ITERATION # ', 1) ..[DONE] (' --residual : ', 0.22727273012462418) Starting validation.. ('Validation, iteration number ', 0) ('Validation, iteration number ', 1) ..[DONE] going to next iteration.. performing interpolation of the displacement field ('..[DONE] -----> going to iteration ', 2) ('ITERATION # ', 2) ..[DONE] (' --residual : ', 0.6429116349607981) Starting validation.. ('Validation, iteration number ', 0) ('Validation, iteration number ', 1) ..[DONE] going to next iteration.. performing interpolation of the displacement field ('..[DONE] -----> going to iteration ', 3) ('ITERATION # ', 3) ..[DONE] (' --residual : ', 0.629290625745527) Starting validation.. ('Validation, iteration number ', 0) ('Validation, iteration number ', 1) ..[DONE] ////////////////////////////////////////////////////////////////// end of iterative process.. Re-arranging vector fields.. ...[DONE] ------------------------------------------------------------- ('[DONE] ..after ', -32.36256504058838, 'seconds ') -------------------------------------------------------------
tools.save(x, y, u, v, zeros_like(u), 'Y4-S3_Camera000398_widim2.txt' )
tools.display_vector_field('Y4-S3_Camera000398_widim1.txt', widim=True, scale=300, width=0.005)
tools.display_vector_field('Y4-S3_Camera000398_widim2.txt', widim=True, scale=300, width=0.005)
tools.display_vector_field('Y4-S3_Camera000398_a.txt', scale=2, width=0.005,scaling_factor=96.52)
tools.display_vector_field('Y4-S3_Camera000398_b.txt', scale=2, width=0.005,scaling_factor=96.52)
<matplotlib.axes._subplots.AxesSubplot at 0x1231d3c10>