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Nuclear Quantum Dynamics
The Standard method
The Time-Dependent Hartree method

Nuclear Quantum Dynamics

The subfield of Theoretical Chemistry in which both the electrons
and the nuclei of a molecular system are treated in a quantum-
mechanical manner.
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Nuclear Quantum Dynamics

What

The subfield of Theoretical Chemistry in which both the electrons
and the nuclei of a molecular system are treated in a quantum-
mechanical manner.

@ Spectroscopy (e.g. IR transitions)

@ Quantum tunneling
@ Vibronic coupling

@ ZPE determination

\
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Nuclear Quantum Dynamics
The Standard method
The Time-Dependent Hartree method

Nuclear Quantum Dynamics

Find the numerical solution of the TDSE truncating the Hilbert
space to a finite dimension (Galerkin's method):

e — Qv 1
Ihat (1)

Given a parametric representation of the WF (W), the optimal

solution can be found using the Dirac-Frenkel Variational Principle
(DF-VP):

~ .0
(6W[H — i W) = 0 (2)
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The Standard method

Most direct representation of the WF:

Ny
W(qi, ceey qf7 Z Z le jf H SO(R) (3)

A=1 Ji=1

After plugging this WF into the DF-VP, and performing the
corresponding algebra we obtain the following EOMs:

iCL=> (pilAles) Cs
J (4)

C(t) = e "HtC(0)

where we have introduced the composite indexes J = (j1, - . ., jf)-
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The Time-Dependent Hartree method

If we now consider time-dependent single-particle functions (SPFs):

f Ny
V(qr,.,qr, 1) = AE) [T D () - x{(ae)  (5)

@n(qn:t)

and use the DF-VP with arbitrary real constraints g = i (¢x(t)|Px (1)),
we get the EOMs:

At) = A(0) - e~/ Jo E(t)at'
ipx = (H™ — E)py

with H() = (0| H|p()),
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Nuclear Quantum Dynamics

The Standard method
The Time-Dependent Hartree method

Limitations of SM and TDH

Standard method

Its application is largely limited due to the curse of dimensionality.
Only systems up to four atoms (6D) can be addressed in practice.

Time-Dependent Hartree

A simpler approach, but physically inaccurate. The nuclear
correlation is harder to retrieve than the electronic correlation due
to the nuclei's larger mass. The character of the nuclear WF is
inherently multiconfigurational.
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© The Multiconfiguration Time-Dependent Hartree method
e EOMs
@ Relaxation and block-improved relaxation
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The Multiconfiguration Time-Dependent Hartree method EOMs
Relaxation and block-improved relaxation

Ansatze comparison
Standard Method (FCl)

w(qh <5 qf, t Z Z le _If H ()D(R) (7)
a=1 Jr=1
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Ansatze comparison
Standard Method (FCl)

Ny N
w(qhaqfat):ZZCth H(p(“) (7)

=1 ji=1

Time-Dependent Hartree (HM)

\U(ql, ..., gf, t H (P(K) qm (8)
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Ansatze comparison

Standard Method (FCl)
Nl Nf
V(gi,...,qr, t) = Z . Z Gt H SD(R) @)

=1 ji=1

Time-Dependent Hartree (HM)
V(q,- .-, qr,t) = At) H 04 (qe, ) (8)
k=1

Multiconfiguration Time-Dependent Hartree (MCSCF)
V(g1 .-, 95, t) Z ZAﬂ, i (£) H @i (g t)  (9)

A=l ji=1 =1
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MCTDH origins and distribution

MCTDH was originally developed by Meyer and coworkers from the
University of Heidelberg, in the early nineties:

THE MULTI-CONFIGURATIONAL TIME-DEPENDENT HARTREE APPROACH

H.-D, MEYER, U, MANTHE and L.S. CEDERBAUM
Theotetische Chemie. Physikalisch-Chemisches Institut, Universitie Heidelberg. D-6900 Heidelberg, Federal Republic of Germany

Received 11 October 1989

There are currently three major implementations of the algorithm:

UNIVERSITAT
. HEIDELBERG

UNIVERSITAT S BEe
BIELEFELD
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The Multiconfiguration Time-Dependent Hartree method EOMs
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The MCTDH EOMs

The MCTDH ansatz has a very flexible Sum-of-Products (SOP)
form:

m nf
w(qla"'7qf7t) = Z "'ZAj1,...df H q/m (10)

A=l ji=1

with time dependent SPFs
N, .
A (G0 t) = 3 (1) - x((q) (11)

The ng)(q,@) are typically DVR functions.
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The MCTDH EOMs

The ansatz WF is determined up to a multiplicative constant. To de-
rive the EOMs arbitrary constraint operators (g(*)) are introduced:

i 16 = (o 18 lef™) (12)
Using once again the DF-VP we get (for §(*) = 0):

iAy =" (PyH|®L) AL
L

Ng
. (K p(x K) y (K) "
ip) = (1= PW) 3™ (o) (A o)
k=1

(13)
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The Multiconfiguration Time-Dependent Hartree method EOMs
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The MCTDH EOMs

iAy = (O,]A|P) AL
L
» A e e (14)
"PJN =(1 P(N)) Z(p(f) )ik (H ) gy 90/"i
k,I=1
f
o, =[] (15)
r=1
K K K * & (fi) K " K
) = (W) = ST A A (A) = WA (16)
Jh
Bk) _ N (9 (R)
P‘)—lej ) (@] (17)
j=1
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The Multiconfiguration Time-Dependent Hartree method EOMs
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MCTDH integration scheme

The MCTDH-EOMs solution is expensive due to the large amount
of multidimensional integrals to solve. Since the mean fields are
not strongly oscillating we can consider (CMF integration):

iAJZZKJLAL
1 1
it = (1 - POY AWM 4 Z(pm ik (ARG o}
k,I=1 (18)
(F) _ G 1y ) ()
io; =(1- f)){h(f<P + Z O ik (AR’ 9 '}
k,/=1
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The Multiconfiguration Time-Dependent Hartree method EOMs
Relaxation and block-improved relaxation

Mode combination

Nothing prevents us from grouping physical coordinates into logical
particles:

QH = (qmla A1y -+ qn,d)
(x) (19)
(Qm )— (%1 qﬁl,---v%,dat)

Under these conditions, the MCTDH ansatz will take the form:

V(Qr,...,Qpt) Z ZAJI, 0 t)Hgof (Q, t)

a=1 Jp=1

) (20)
2 (Qr, t) Z () TT X (g
v=1
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The Multiconfiguration Time-Dependent Hartree method EOMs
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Multilayer MCTDH (3-layer case)

We can propagate the multidimensional SPFs with MCTDH itself!

ni2 n3

V(g1 a0, 05 8) = D > Ajnis(8) ) (a1, a0, ) (a3, 1) (21)
J12=1j3=1

where we have introduced:

(12,
991(12 qlaq2 t Z Z BIq k;12 H§ qua (22)
ki=1 ky=1 pn=1
and:
& (e t) Zc“’ o (g,) (23)
=1
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Multilayer MCTDH (3-layer case)

nm2 N3
V(a1 92,03, t) = D Ajojsl yju)(tn 92, t)<p (a3, 1)
J12=173=1

S (12, ,
@}, (a1, a2, 1) Z Z By’ kz” (t) Hskg (au»t)

ky=1kp=1 =1

€0 (. t Zc“*“(r ) (q.)

=1
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The Multiconfiguration Time-Dependent Hartree method EOMs
Relaxation and block-improved relaxation

Obtaining vibrational orbitals

MCTDH can be also used to solve the TISE. The GS distribution
of the system can be obtained by propagation in negative
imaginary time 7 = —it:

V=—Av (24)

The new algorithm can be derived by applying the
time-independent variational principle with Lagrange multipliers:

S{(VWIAV) — ZAJAJ_l) ZZ )~ a1} =0

k=1j,I=1
(25)
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The Multiconfiguration Time-Dependent Hartree method EOMs
Relaxation and block-improved relaxation

Obtaining vibrational orbitals

Taking the variations with respect to the complex conjugate of
both the A-vector and the SPFs independently we get:

> HiAx = EA;
K

aQDK) . B . (%) (26)
GJT === P e (H) g o =0
Py

The second of these equations implies that we can obtain the
updated SPFs simply by relaxation. The A-vector in the first
equation can be obtained by Davidson diagonalization algorithm.
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© Potential energy surface representations
@ Tensor decomposition algorithms
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. . Tensor decomposition algorithms
Potential energy surface representations =

The importance of the SOP form

The multidimensional integrals arising from the MCTDH-EOMs
are the bottleneck of the propagation. To address this issue, we
impose SOP form to all quantities:

a=1 k=1
oo (27)
(@5]0100) = co ] (1 88710()

a=1 k=1

e KEO already in the desired form (TANA and TNUM software)
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. . Tensor decomposition algorithms
Potential energy surface representations =

The importance of the SOP form

The multidimensional integrals arising from the MCTDH-EOMs
are the bottleneck of the propagation. To address this issue, we
impose SOP form to all quantities:

a=1 k=1
oo (27)
(@5]0100) = co ] (1 88710()

a=1 k=1

e KEO already in the desired form (TANA and TNUM software)
@ PES might be challenging to transform
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. . Tensor decomposition algorithms
Potential energy surface representations P &

Transforming the PES

Usually the PES needs to be refitted (tensor decomposed) before
using it. The POTFIT algorithm is an elegant way of achieving
this in Tucker form:

1 f
\/I'l,...,l' = V(q,(1 )7 Tt ql(f ))

e Ty
117 ol Jijf IKJN
k=1

=l =1

(28)

with the core tensor coefficients given by the overlap with the

potential:
1 f
Jl Je = Z Vir...i ul(1 )j1 o u’gf )jf (29)
I
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Tensor decomposition algorithms

Potential energy surface representations

The Tucker form

The tucker decomposition of a 3D tensor can be represented
graphically as?

which can be contrasted with the algebraic and tensor forms:

_ (fﬂ)

V= ><1U1~~><,,Un

!Panadés-Barrueta R., and Peldez D. JCP (in review)
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Tensor decomposition algorithms

There is a number of tensor decomposition algorithms currently in
use (e.g. POTFIT, MGPF, MCPF, MLPF), however, they are all
limited by the size of the grids. The SOP-FBR method was
developed as an alternative to the former:

V(qu---,qf Z chl JchD

=1 =1

. (31)
®, (q)= > B T, (qx)

V=1

This is a fully analytical SOP form, differentiable ad infinitum, and
that can be directly interfaced with MCTDH.
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The POTFIT and HOOI algorithms

Algorithm 2: HOSVD HOOI
Result: C,Uq,..., U,

Algorithm 1: POTFIT Input: V;

Result: C,Uq,...,U, repeat

Input: V; for k < 1to ndo

for k < 1 to ndo yFVxlUfl“‘quU;ileH
Uk = EVD(V, - Vi) Ul xa Uph

end Up + SVD(V(k)) SVD(Y(k))

C(—VXlulil"'XnUnil end

C+Vxi U™t x,U,!
until [V, — V| < ¢

® EVD(V{, - V() = SVD(V() !
@ POTFIT optimizes the factor matrices in a slightly different manner:

N
G(m) _ (0 () (%)
G =i+ >0

I=n,+1
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Potential energy surface representations

The SOP-FBR algorithm

Tensor decomposition algorithms

Algorithm 3: SOP-FBR

Function sopfbr (B, C):
1+ 0;
for k <+ 0 to D do
for j < 0 to M[k] do
for i < 0 to Gyp[:, k] do
| UY) ¢ chebyshev(Gusli, kI, B(I < 1+ TIK)):
end
I 1+ TIK];
end
end
Egop ¢ C x1 UMD .5 p UD);
return £y,

Panadés-Barrueta

Result: xop¢
Input: Xguess guess parameters, D dimensionality, M number of
basis functions, T degree of Chebyshev series, Ny number of
geometries, € threshold ;
k +0;
X0 4 Xguess:
Gap, Eap < geogen(Ng);
Function target (B, C):
Egop + sopfbr(B, C);
P NEap — Exopllty
return p
repeat
B, C + split(xx, T x M);
B <« BFGS(target(B, C));
p, C + Powell(target(B, C));
Xk+1 < concatenate(B, C);
k+—k+1;
until p<eVk <N,
Xopt < Xk
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@ Code structure and example applications
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Code structure and example applications

The Heidelberg implementation of MCTDH

The actual implementation is written mainly in flontrian] , with
some small @ and @ contributions. The program has a modular

structure with a very intuitive and consistent input syntax. Some
sections of a POTFIT input file:

RUN-SECTION # System declaration
name = h2o. pfit # The file extension only
end—run—section # suggests a POTFIT calculation

OPERATOR-SECTION

pes = pjt2{binding}

veut < 0.5 # Define Hamiltonian
end—operator—section

PRIMITIVE—BASIS—SECTION

rl sin 34 1.0 3.475
r2 sin 34 1.0 3.475 # Define coordinates
theta Leg/R 50 0 all 0.5 3.2 # and basis functions
end—primitive—basis—section
- _J
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Code structure and example applications

Applications
Some interesting applications that showcase the power of MCTDH

are 2:

(d) ‘ " heter. win (1)
heter. win (2) ——

0.6

o(E)
o(E)

EfeV]

(a) 24D (b) 1458D

Figure: Power spectrum obtained with ML-MCTDH for (a) pyrazine (b)

the Henon-Heiles Hamiltonian

2Vendrell, O., and Meyer, H.D., JCP 134.4 (2011): 044135.
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Thanks for your attention!
Bedankt voor uw aandacht!

Questions?
Vragen?
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