
HCR Imaging Python Module User Guide
Containing the Dot Detection 2.0 and Unmix 1.0 Packages

Mark E. Fornace,1 Samuel J. Schulte,1 and Niles A. Pierce1,2

This user guide describes the installation and use of the hcr imaging Python module, which provides commands
for the following two packages (Schulte et al., 2024):

• Dot Detection 2.0: detection and colocalization of single-molecule dots in fluorescent HCR images.
• Unmix 1.0: linear unmixing of fluorescent multiplex HCR spectral images.

Technical support: support@moleculartechnologies.org

1 Dot Detection 2.0

HCR RNA-FISH enables digital RNA absolute quantitation (dHCR imaging mode) with single-molecule resolution
in highly autofluorescent samples including whole-mount vertebrate embryos and thick brain slices (Shah et al.,
2016; Choi et al., 2018; Schulte et al., 2024). dHCR imaging mode is suitable for low-expression targets imaged at
high magnification (e.g., 63× or 100×). Dot Detection 2.0 identifies diffraction-limited single-molecule dots in a
fluorescent image obtained either using HCR bandpass imaging (Shah et al., 2016; Choi et al., 2018) or HCR spectral
imaging (Schulte et al., 2024). For a given fluorescent channel in a 2D or 3D image, the algorithm identifies a set of
dot positions and weights. For a 2-channel redundant detection experiment in which target molecules are detected
using two independent probes sets and amplifiers, Dot Detection 2.0 also performs dot colocalization between the
two channels. As mRNA false-positive and false-negative rates for each channel go to zero, the colocalization
fraction for each channel (fraction of dots in a given channel that are in both channels) will approach one from
below (Shah et al., 2016; Choi et al., 2018).

Dot Detection 2.0 is an implementation of dot detection and colocalization via determinant-of-Hessian convolu-
tion and Gaussian mixture optimization (see Section S1.4.4 of (Schulte et al., 2024)). This package differs from Dot
Detection 1.0 (see Section S1.4.6 of (Choi et al., 2018)) primarily in its programming in Python rather than Mathe-
matica, its use of determinant-of-Hessian (DoH) versus Laplacian-of-Gaussian (LoG) convolution, and its sub-pixel
refinement via Gaussian mixture optimization.

1.1 Input file

The package expects one required input file:

• a raw xy or xyz image file containing one or more channels. A variety of image formats are supported,
including .lif, .czi, and .tif.

1.2 Example notebook

Use of Dot Detection 2.0 is illustrated in a Jupyter notebook that contains detailed comments:

• dot detection and colocalization

This notebook may also be viewed or downloaded on GitHub. Data files are available from CaltechDATA. Scripts
may be viewed without downloading the data files. Note that due to the limitations of floating-point arithmetic, dot
counts may vary slightly depending on computer hardware.

1Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. 2Division of Engineer-
ing & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.

https://nbviewer.org/github/Piercelab-Caltech/HCR-Imaging-Python-Module/blob/main/examples/dot-detection-example.ipynb
https://github.com/Piercelab-Caltech/HCR-Imaging-Python-Module
https://data.caltech.edu/records/kznyx-xq341


2 Unmix 1.0

HCR spectral imaging enables robust 10-plex, quantitative, high-resolution RNA and protein imaging in highly
autofluorescent samples including whole-mount vertebrate embryos and brain sections. The following standardized
ingredients are employed (Schulte et al., 2024):

• 10 orthogonal HCR amplifiers (one per target),
• an optimized set of 10 fluorophores (one per amplifier),
• 10 optimized excitation wavelengths (one per fluorophore),
• 10 sets of optimized detection wavelengths (one to three detectors per fluorophore),
• an optimized excitation wavelength and set of four detection wavelengths for autofluorescence (measured by

the user for the sample type of interest; treated as an 11th channel),
• spectral imaging hardware that provides the flexibility to use optimal excitation wavelengths for each fluo-

rophore and for autofluorescence (Leica Stellaris 8 confocal microscope),
• linear unmixing software (Leica LAS X or Unmix 1.0) that returns 11 unmixed channels (one per fluorophore

and one for autofluorescence).

Section S.2.1 of (Schulte et al., 2024) provides detailed protocols for 10-plex HCR spectral imaging and linear
unmixing using the Leica Stellaris 8 microscope and Leica LAS X software. For users that do not have access to a
Leica Stellaris 8 microscope, these robust ingredients and workflow provide a starting point for adaptation to locally
available hardware, and Unmix 1.0 provides the flexibility to unmix spectral imaging data without use of Leica LAS
X software.

Unmix 1.0 provides an efficient implementation of linear unmixing via non-negative least squares regression
(see Section S1.4.5 of (Schulte et al., 2024)).

2.1 Input files

The package expects two required input files:

• The sample image, containing the sample xy or xyz data imaged with each combination of excitation and
detector settings. Unmix 1.0 can handle a variety of common image formats including .lif, .czi, and
.tif. Images may be two- or three-dimensional.

• The unmixing matrix, a small matrix with number of rows equal to the number of combinations of excitation
and detector settings and number of columns equal to the number of output channels. If using the Leica LAS X
software, this matrix can be loaded directly from the .sdm file output by that software (consult Section S2.1.4
of (Schulte et al., 2024) for detailed instructions). If not using the Leica LAS X software, see the example
notebook example-unmixing-matrix.ipynb for an example of how to construct the unmixing matrix
given a set of reference images.

2.2 Example notebooks

Use of Unmix 1.0 is illustrated in two Jupyter notebooks that contain detailed comments:

• Linear unmixing given a presupplied unmixing matrix for zebrafish image
• Linear unmixing matrix construction for zebrafish image

For convenience, two additional notebooks demonstrate identical usage using mouse brain images. These notebooks
are equivalent to those above except for the choice of input image. Due to the size constraints of online viewing,
these notebooks are only available for download:

• mouse-brain-unmixing-example.ipynb: Linear unmixing given a presupplied unmixing matrix for
mouse brain image

2

https://nbviewer.org/github/Piercelab-Caltech/HCR-Imaging-Python-Module/blob/main/examples/zebrafish-unmixing-example.ipynb
https://nbviewer.org/github/Piercelab-Caltech/HCR-Imaging-Python-Module/blob/main/examples/zebrafish-unmixing-matrix-example.ipynb


• mouse-brain-unmixing-matrix-example.ipynb: Linear unmixing matrix construction for mouse
brain image

All described notebooks may be downloaded as part of the distributed release or directly on GitHub. Data files are
available from CaltechDATA. Scripts may be viewed without downloading the data files.

3 Software installation

hcr imaging is distributed as a Python 3 module with a few high-performance routines written in C++. As such,
the module may be installed from the provided binaries using pip in most cases. If desired, the module may also
be installed from source, supposing that a C++ compiler is installed on the host system.

3.1 Installation requirements

We provide pre-built binaries for the hcr imaging package for the following architectures:

• macOS arm64 (M-series processors)

• macOS x86 64 (older Intel processors)

• Linux x86 64

• Linux arm64

• Windows

These binaries are included in the distributed release zipfile here under subdirectory /binaries. If your archi-
tecture is not listed above, please follow the instructions in Section 3.3.1 to install from source instead. Note also
that the distributed Windows binaries use slightly slower versions of the necessary linear algebra routines, so in rare
cases it may be worth installing from source and specifying your BLAS library directly.

3.2 Installing Python

This image analysis module requires Python 3.8 or greater. For newcomers to Python, an easy way to get a suitable
Python 3 environment is by installing Anaconda. For Mac users, make sure to download the arm64-specific Ana-
conda module if you have an M-series processor. The module will not function if you install the provided binaries
using an x86 64 installation of Python with an arm64 Mac architecture.

3.3 Installing the hcr imaging module

A number of Python packages are needed as strict dependencies, and they should be installed automatically (for an
up-to-date list, consult the pyproject.toml file in the source repository). To install this module, in your terminal
enter the following command:

python3 -m pip install -U hcr_imaging -f /path/to/binaries

(Replace /path/to/package-binarieswith the path to your local directory containing the distributed *.whl
files.) It is also recommended that you install jupyter lab or jupyter notebook to facilitate interactive us-
age.

If you have a version conflict in one of your pre-installed dependencies, it is recommended to use a fresh
conda environment, which you can create via a command like conda create -n my environment name
python. Please contact support if you run into repeated issues with dependency conflicts.

3

https://github.com/Piercelab-Caltech/HCR-Imaging-Python-Module
https://data.caltech.edu/records/kznyx-xq341
https://github.com/Piercelab-Caltech/HCR-Imaging-Python-Module/releases/download/v1.0/HCR-Imaging-Python-Module.zip
https://www.anaconda.com/


3.3.1 Source installation

Installation of binaries via pip is recommended unless you have an unsupported architecture or specific needs. You
do not need to install the software from source if you install it from the distributed binaries. However, if you have a
working C++17 compiler (including gcc, clang, or Windows Visual Studio), you can also build this module from
source via the following command:

python3 -m pip install -U /path/to/source-code

(Replace /path/to/source-code with the path to your local directory containing the distributed setup.py
file.) When installing from source, you may specify the HCR IMAGING BLAS environmental variable to point to
an optimized BLAS library which is installed on your system. This is generally not necessary for macOS, but for
Linux and Windows you will obtain higher performance if you specify this library.

3.4 Running example notebooks

For newcomers to the Python ecosystems, we would recommend that you follow the guide here to launch JupyterLab
to run Jupyter notebooks like the examples provided. To install JupyterLab, run the following command in your
terminal:

conda install -c conda-forge jupyterlab # If using Anaconda
pip install jupyterlab # Otherwise

(See here for additional instructions for installing JupyterLab, if needed.) Assuming JupyterLab is installed, launch
it while providing the directory containing the example notebook (*.ipynb) files:

jupyter lab /path/to/examples

A browser window should open. Each example notebook may be executed all at once by clicking the “Restart and
run all cells” command from the menu. However, the input image file path may have to be changed depending on
your downloaded location. Alternatively, each cell may be run in sequence by typing shift-enter from your keyboard
for each highlighted cell.

4 Acknowledgments

We thank G.J. Shin and S. Zhu for beta testing the HCR Imaging Python Module.

References

Choi, H. M. T., Schwarzkopf, M., Fornace, M. E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha, A., &
Pierce, N. A. (2018). Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive,
versatile, robust. Development, 145, dev165753.

Schulte, S. J., Fornace, M. E., Hall, J. K., Shin, G. J., & Pierce, N. A. (2024). HCR spectral imaging: 10-plex,
quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. Development, 151,
dev202307. (pdf, supp info, supp movie).

Shah, S., Lubeck, E., Schwarzkopf, M., He, T.-F., Greenbaum, A., Sohn, C. H., Lignell, A., Choi, H. M. T.,
Gradinaru, V., Pierce, N. A., & Cai, L. (2016). Single-molecule RNA detection at depth via hybridization
chain reaction and tissue hydrogel embedding and clearing. Development, 143, 2862–2867.

4

https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://www.moleculartechnologies.org/supp/schulte24b.pdf
https://www.moleculartechnologies.org/supp/schulte24b-suppinfo.pdf
https://www.moleculartechnologies.org/supp/schulte24b-suppmovie.pdf

	Dot Detection 2.0
	Input file
	Example notebook

	Unmix 1.0
	Input files
	Example notebooks

	Software installation
	Installation requirements
	Installing Python
	Installing the hcr_imaging module
	Source installation 

	Running example notebooks

	Acknowledgments
	References

