In [ ]:
%matplotlib inline

Analysing ITER parameters

Let's try to look at ITER plasma conditions using the physics subpackage.

In [ ]:
import matplotlib.pyplot as plt
import numpy as np

from astropy import units as u
from mpl_toolkits.mplot3d import Axes3D

from plasmapy import formulary
In [ ]:
electron_temperature = 8.8 * u.keV
electron_concentration = 10.1e19 / u.m ** 3
print(formulary.Debye_length(electron_temperature, electron_concentration))

Note that we can also neglect the unit for the concentration, as 1/m^3 is the a standard unit for this kind of Quantity:

In [ ]:
print(formulary.Debye_length(electron_temperature, 10.1e19))

Assuming the magnetic field as 5.3 Teslas (which is the value at the major radius):

In [ ]:
B = 5.3 * u.T

print(formulary.gyrofrequency(B, particle="e"))

print(formulary.gyroradius(B, T_i=electron_temperature, particle="e"))
In [ ]:
print(formulary.inertial_length(electron_concentration, particle="e"))

In these conditions, they should reach thermal velocities of about

In [ ]:
print(formulary.thermal_speed(T=electron_temperature, particle="e"))
In [ ]:
print(formulary.plasma_frequency(electron_concentration, particle="e-"))

Let's try to recreate some plots and get a feel for some of these quantities. We will also compare our data to real-world plasma situations.

In [ ]:
n_e = np.logspace(4, 30, 100) / u.m ** 3
plt.plot(n_e, formulary.plasma_frequency(n_e, particle="e-"))
plt.scatter(
    electron_concentration,
    formulary.plasma_frequency(electron_concentration, particle="e-"),
    label="Our Data",
)

# IRT1 Tokamak Data
# http://article.sapub.org/pdf/10.5923.j.jnpp.20110101.03.pdf
n_e = 1.2e19 / u.m ** 3
T_e = 136.8323 * u.eV
B = 0.82 * u.T
plt.scatter(n_e, formulary.plasma_frequency(n_e, particle="e-"), label="IRT1 Tokamak")

# Wendelstein 7-X Stellerator Data
# https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202016/fec2016-preprints/preprint0541.pdf
n_e = 3e19 / u.m ** 3
T_e = 6 * u.keV
B = 3 * u.T
plt.scatter(
    n_e, formulary.plasma_frequency(n_e, particle="e-"), label="W7-X Stellerator"
)

# Solar Corona
# Estimated by Nick Murphy
n_e = 1e15 / u.m ** 3
T_e = 1e6 * u.K
B = 0.005 * u.T
T_e.to(u.eV, equivalencies=u.temperature_energy())
plt.scatter(n_e, formulary.plasma_frequency(n_e, particle="e-"), label="Solar Corona")

# Interstellar (warm neutral) Medium
# Estimated by Nick Murphy
n_e = 1e6 / u.m ** 3
T_e = 5e3 * u.K
B = 0.005 * u.T
T_e.to(u.eV, equivalencies=u.temperature_energy())
plt.scatter(
    n_e, formulary.plasma_frequency(n_e, particle="e-"), label="Interstellar Medium"
)

# Solar Wind at 1 AU
# Estimated by Nick Murphy
n_e = 7e6 / u.m ** 3
T_e = 1e5 * u.K
B = 5e-9 * u.T
T_e.to(u.eV, equivalencies=u.temperature_energy())
plt.scatter(
    n_e, formulary.plasma_frequency(n_e, particle="e-"), label="Solar Wind (1AU)"
)


plt.xlabel("Electron Concentration (m^-3)")
plt.ylabel("Langmuir Wave Plasma Frequency (rad/s)")
plt.grid()
plt.xscale("log")
plt.yscale("log")
plt.legend()
plt.title("Log-scale plot of plasma frequencies")
plt.show()