Source: All these data sets are made up of data from the US government. https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html
TASK: Run the following cells to import libraries and read in data.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(r"C:\Users\Teni\Desktop\Git-Github\DATA\CIA_Country_Facts.csv")
TASK: Explore the rows and columns of the data as well as the data types of the columns.
df.head()
Country | Region | Population | Area (sq. mi.) | Pop. Density (per sq. mi.) | Coastline (coast/area ratio) | Net migration | Infant mortality (per 1000 births) | GDP ($ per capita) | Literacy (%) | Phones (per 1000) | Arable (%) | Crops (%) | Other (%) | Climate | Birthrate | Deathrate | Agriculture | Industry | Service | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | ASIA (EX. NEAR EAST) | 31056997 | 647500 | 48.0 | 0.00 | 23.06 | 163.07 | 700.0 | 36.0 | 3.2 | 12.13 | 0.22 | 87.65 | 1.0 | 46.60 | 20.34 | 0.380 | 0.240 | 0.380 |
1 | Albania | EASTERN EUROPE | 3581655 | 28748 | 124.6 | 1.26 | -4.93 | 21.52 | 4500.0 | 86.5 | 71.2 | 21.09 | 4.42 | 74.49 | 3.0 | 15.11 | 5.22 | 0.232 | 0.188 | 0.579 |
2 | Algeria | NORTHERN AFRICA | 32930091 | 2381740 | 13.8 | 0.04 | -0.39 | 31.00 | 6000.0 | 70.0 | 78.1 | 3.22 | 0.25 | 96.53 | 1.0 | 17.14 | 4.61 | 0.101 | 0.600 | 0.298 |
3 | American Samoa | OCEANIA | 57794 | 199 | 290.4 | 58.29 | -20.71 | 9.27 | 8000.0 | 97.0 | 259.5 | 10.00 | 15.00 | 75.00 | 2.0 | 22.46 | 3.27 | NaN | NaN | NaN |
4 | Andorra | WESTERN EUROPE | 71201 | 468 | 152.1 | 0.00 | 6.60 | 4.05 | 19000.0 | 100.0 | 497.2 | 2.22 | 0.00 | 97.78 | 3.0 | 8.71 | 6.25 | NaN | NaN | NaN |
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 227 entries, 0 to 226 Data columns (total 20 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Country 227 non-null object 1 Region 227 non-null object 2 Population 227 non-null int64 3 Area (sq. mi.) 227 non-null int64 4 Pop. Density (per sq. mi.) 227 non-null float64 5 Coastline (coast/area ratio) 227 non-null float64 6 Net migration 224 non-null float64 7 Infant mortality (per 1000 births) 224 non-null float64 8 GDP ($ per capita) 226 non-null float64 9 Literacy (%) 209 non-null float64 10 Phones (per 1000) 223 non-null float64 11 Arable (%) 225 non-null float64 12 Crops (%) 225 non-null float64 13 Other (%) 225 non-null float64 14 Climate 205 non-null float64 15 Birthrate 224 non-null float64 16 Deathrate 223 non-null float64 17 Agriculture 212 non-null float64 18 Industry 211 non-null float64 19 Service 212 non-null float64 dtypes: float64(16), int64(2), object(2) memory usage: 35.6+ KB
df.describe().transpose()
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
Population | 227.0 | 2.874028e+07 | 1.178913e+08 | 7026.000 | 437624.00000 | 4786994.000 | 1.749777e+07 | 1.313974e+09 |
Area (sq. mi.) | 227.0 | 5.982270e+05 | 1.790282e+06 | 2.000 | 4647.50000 | 86600.000 | 4.418110e+05 | 1.707520e+07 |
Pop. Density (per sq. mi.) | 227.0 | 3.790471e+02 | 1.660186e+03 | 0.000 | 29.15000 | 78.800 | 1.901500e+02 | 1.627150e+04 |
Coastline (coast/area ratio) | 227.0 | 2.116533e+01 | 7.228686e+01 | 0.000 | 0.10000 | 0.730 | 1.034500e+01 | 8.706600e+02 |
Net migration | 224.0 | 3.812500e-02 | 4.889269e+00 | -20.990 | -0.92750 | 0.000 | 9.975000e-01 | 2.306000e+01 |
Infant mortality (per 1000 births) | 224.0 | 3.550696e+01 | 3.538990e+01 | 2.290 | 8.15000 | 21.000 | 5.570500e+01 | 1.911900e+02 |
GDP ($ per capita) | 226.0 | 9.689823e+03 | 1.004914e+04 | 500.000 | 1900.00000 | 5550.000 | 1.570000e+04 | 5.510000e+04 |
Literacy (%) | 209.0 | 8.283828e+01 | 1.972217e+01 | 17.600 | 70.60000 | 92.500 | 9.800000e+01 | 1.000000e+02 |
Phones (per 1000) | 223.0 | 2.360614e+02 | 2.279918e+02 | 0.200 | 37.80000 | 176.200 | 3.896500e+02 | 1.035600e+03 |
Arable (%) | 225.0 | 1.379711e+01 | 1.304040e+01 | 0.000 | 3.22000 | 10.420 | 2.000000e+01 | 6.211000e+01 |
Crops (%) | 225.0 | 4.564222e+00 | 8.361470e+00 | 0.000 | 0.19000 | 1.030 | 4.440000e+00 | 5.068000e+01 |
Other (%) | 225.0 | 8.163831e+01 | 1.614083e+01 | 33.330 | 71.65000 | 85.700 | 9.544000e+01 | 1.000000e+02 |
Climate | 205.0 | 2.139024e+00 | 6.993968e-01 | 1.000 | 2.00000 | 2.000 | 3.000000e+00 | 4.000000e+00 |
Birthrate | 224.0 | 2.211473e+01 | 1.117672e+01 | 7.290 | 12.67250 | 18.790 | 2.982000e+01 | 5.073000e+01 |
Deathrate | 223.0 | 9.241345e+00 | 4.990026e+00 | 2.290 | 5.91000 | 7.840 | 1.060500e+01 | 2.974000e+01 |
Agriculture | 212.0 | 1.508443e-01 | 1.467980e-01 | 0.000 | 0.03775 | 0.099 | 2.210000e-01 | 7.690000e-01 |
Industry | 211.0 | 2.827109e-01 | 1.382722e-01 | 0.020 | 0.19300 | 0.272 | 3.410000e-01 | 9.060000e-01 |
Service | 212.0 | 5.652830e-01 | 1.658410e-01 | 0.062 | 0.42925 | 0.571 | 6.785000e-01 | 9.540000e-01 |
Let's create some visualizations. Please feel free to expand on these with your own analysis and charts!
TASK: Create a histogram of the Population column.
sns.histplot(data=df,x='Population')
<AxesSubplot:xlabel='Population', ylabel='Count'>
TASK: You should notice the histogram is skewed due to a few large countries, reset the X axis to only show countries with less than 0.5 billion people
sns.histplot(data=df[df['Population']<500000000],x='Population')
<AxesSubplot:xlabel='Population', ylabel='Count'>
TASK: Now let's explore GDP and Regions. Create a bar chart showing the mean GDP per Capita per region (recall the black bar represents std).
plt.figure(figsize=(10,6),dpi=200)
sns.barplot(data=df,y='GDP ($ per capita)',x='Region',estimator=np.mean)
plt.xticks(rotation=90);
TASK: Create a scatterplot showing the relationship between Phones per 1000 people and the GDP per Capita. Color these points by Region.
plt.figure(figsize=(10,6),dpi=200)
sns.scatterplot(data=df,x='GDP ($ per capita)',y='Phones (per 1000)',hue='Region')
plt.legend(loc=(1.05,0.5))
<matplotlib.legend.Legend at 0x20204d57310>
TASK: Create a scatterplot showing the relationship between GDP per Capita and Literacy (color the points by Region). What conclusions do you draw from this plot?
plt.figure(figsize=(10,6),dpi=200)
sns.scatterplot(data=df,x='GDP ($ per capita)',y='Literacy (%)',hue='Region')
<AxesSubplot:xlabel='GDP ($ per capita)', ylabel='Literacy (%)'>
TASK: Create a Heatmap of the Correlation between columns in the DataFrame.
sns.heatmap(df.corr())
<AxesSubplot:>
TASK: Seaborn can auto perform hierarchal clustering through the clustermap() function. Create a clustermap of the correlations between each column with this function.
sns.clustermap(df.corr())
<seaborn.matrix.ClusterGrid at 0x202058b1850>
df.isnull().sum()
Country 0 Region 0 Population 0 Area (sq. mi.) 0 Pop. Density (per sq. mi.) 0 Coastline (coast/area ratio) 0 Net migration 3 Infant mortality (per 1000 births) 3 GDP ($ per capita) 1 Literacy (%) 18 Phones (per 1000) 4 Arable (%) 2 Crops (%) 2 Other (%) 2 Climate 22 Birthrate 3 Deathrate 4 Agriculture 15 Industry 16 Service 15 dtype: int64
TASK: What countries have NaN for Agriculture? What is the main aspect of these countries?
df[df['Agriculture'].isnull()]['Country']
3 American Samoa 4 Andorra 78 Gibraltar 80 Greenland 83 Guam 134 Mayotte 140 Montserrat 144 Nauru 153 N. Mariana Islands 171 Saint Helena 174 St Pierre & Miquelon 177 San Marino 208 Turks & Caicos Is 221 Wallis and Futuna 223 Western Sahara Name: Country, dtype: object
TASK: You should have noticed most of these countries are tiny islands, with the exception of Greenland and Western Sahara. Go ahead and fill any of these countries missing NaN values with 0, since they are so small or essentially non-existant. There should be 15 countries in total you do this for. For a hint on how to do this, recall you can do the following:
df[df['feature'].isnull()]
# REMOVAL OF TINY ISLANDS
df[df['Agriculture'].isnull()] = df[df['Agriculture'].isnull()].fillna(0)
TASK: Now check to see what is still missing by counting number of missing elements again per feature:
df.isnull().sum()
Country 0 Region 0 Population 0 Area (sq. mi.) 0 Pop. Density (per sq. mi.) 0 Coastline (coast/area ratio) 0 Net migration 1 Infant mortality (per 1000 births) 1 GDP ($ per capita) 0 Literacy (%) 13 Phones (per 1000) 2 Arable (%) 1 Crops (%) 1 Other (%) 1 Climate 18 Birthrate 1 Deathrate 2 Agriculture 0 Industry 1 Service 1 dtype: int64
TASK: Notice climate is missing for a few countries, but not the Region! Let's use this to our advantage. Fill in the missing Climate values based on the mean climate value for its region.
Hints on how to do this: https://stackoverflow.com/questions/19966018/pandas-filling-missing-values-by-mean-in-each-group
# https://stackoverflow.com/questions/19966018/pandas-filling-missing-values-by-mean-in-each-group
df['Climate'] = df['Climate'].fillna(df.groupby('Region')['Climate'].transform('mean'))
TASK: Check again on many elements are missing:
df.isnull().sum()
Country 0 Region 0 Population 0 Area (sq. mi.) 0 Pop. Density (per sq. mi.) 0 Coastline (coast/area ratio) 0 Net migration 1 Infant mortality (per 1000 births) 1 GDP ($ per capita) 0 Literacy (%) 13 Phones (per 1000) 2 Arable (%) 1 Crops (%) 1 Other (%) 1 Climate 0 Birthrate 1 Deathrate 2 Agriculture 0 Industry 1 Service 1 dtype: int64
TASK: It looks like Literacy percentage is missing. Use the same tactic as we did with Climate missing values and fill in any missing Literacy % values with the mean Literacy % of the Region.
df[df['Literacy (%)'].isnull()]
Country | Region | Population | Area (sq. mi.) | Pop. Density (per sq. mi.) | Coastline (coast/area ratio) | Net migration | Infant mortality (per 1000 births) | GDP ($ per capita) | Literacy (%) | Phones (per 1000) | Arable (%) | Crops (%) | Other (%) | Climate | Birthrate | Deathrate | Agriculture | Industry | Service | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | Bosnia & Herzegovina | EASTERN EUROPE | 4498976 | 51129 | 88.0 | 0.04 | 0.31 | 21.05 | 6100.0 | NaN | 215.4 | 13.60 | 2.96 | 83.44 | 4.000000 | 8.77 | 8.27 | 0.142 | 0.308 | 0.550 |
66 | Faroe Islands | WESTERN EUROPE | 47246 | 1399 | 33.8 | 79.84 | 1.41 | 6.24 | 22000.0 | NaN | 503.8 | 2.14 | 0.00 | 97.86 | 2.826087 | 14.05 | 8.70 | 0.270 | 0.110 | 0.620 |
74 | Gaza Strip | NEAR EAST | 1428757 | 360 | 3968.8 | 11.11 | 1.60 | 22.93 | 600.0 | NaN | 244.3 | 28.95 | 21.05 | 50.00 | 3.000000 | 39.45 | 3.80 | 0.030 | 0.283 | 0.687 |
85 | Guernsey | WESTERN EUROPE | 65409 | 78 | 838.6 | 64.10 | 3.84 | 4.71 | 20000.0 | NaN | 842.4 | NaN | NaN | NaN | 3.000000 | 8.81 | 10.01 | 0.030 | 0.100 | 0.870 |
99 | Isle of Man | WESTERN EUROPE | 75441 | 572 | 131.9 | 27.97 | 5.36 | 5.93 | 21000.0 | NaN | 676.0 | 9.00 | 0.00 | 91.00 | 3.000000 | 11.05 | 11.19 | 0.010 | 0.130 | 0.860 |
104 | Jersey | WESTERN EUROPE | 91084 | 116 | 785.2 | 60.34 | 2.76 | 5.24 | 24800.0 | NaN | 811.3 | 0.00 | 0.00 | 100.00 | 3.000000 | 9.30 | 9.28 | 0.050 | 0.020 | 0.930 |
108 | Kiribati | OCEANIA | 105432 | 811 | 130.0 | 140.94 | 0.00 | 48.52 | 800.0 | NaN | 42.7 | 2.74 | 50.68 | 46.58 | 2.000000 | 30.65 | 8.26 | 0.089 | 0.242 | 0.668 |
123 | Macedonia | EASTERN EUROPE | 2050554 | 25333 | 80.9 | 0.00 | -1.45 | 10.09 | 6700.0 | NaN | 260.0 | 22.26 | 1.81 | 75.93 | 3.000000 | 12.02 | 8.77 | 0.118 | 0.319 | 0.563 |
185 | Slovakia | EASTERN EUROPE | 5439448 | 48845 | 111.4 | 0.00 | 0.30 | 7.41 | 13300.0 | NaN | 220.1 | 30.16 | 2.62 | 67.22 | 3.000000 | 10.65 | 9.45 | 0.035 | 0.294 | 0.672 |
187 | Solomon Islands | OCEANIA | 552438 | 28450 | 19.4 | 18.67 | 0.00 | 21.29 | 1700.0 | NaN | 13.4 | 0.64 | 2.00 | 97.36 | 2.000000 | 30.01 | 3.92 | 0.420 | 0.110 | 0.470 |
209 | Tuvalu | OCEANIA | 11810 | 26 | 454.2 | 92.31 | 0.00 | 20.03 | 1100.0 | NaN | 59.3 | 0.00 | 0.00 | 100.00 | 2.000000 | 22.18 | 7.11 | 0.166 | 0.272 | 0.562 |
220 | Virgin Islands | LATIN AMER. & CARIB | 108605 | 1910 | 56.9 | 9.84 | -8.94 | 8.03 | 17200.0 | NaN | 652.8 | 11.76 | 2.94 | 85.30 | 2.000000 | 13.96 | 6.43 | 0.010 | 0.190 | 0.800 |
222 | West Bank | NEAR EAST | 2460492 | 5860 | 419.9 | 0.00 | 2.98 | 19.62 | 800.0 | NaN | 145.2 | 16.90 | 18.97 | 64.13 | 3.000000 | 31.67 | 3.92 | 0.090 | 0.280 | 0.630 |
# https://stackoverflow.com/questions/19966018/pandas-filling-missing-values-by-mean-in-each-group
df['Literacy (%)'] = df['Literacy (%)'].fillna(df.groupby('Region')['Literacy (%)'].transform('mean'))
TASK: Check again on the remaining missing values:
df.isnull().sum()
Country 0 Region 0 Population 0 Area (sq. mi.) 0 Pop. Density (per sq. mi.) 0 Coastline (coast/area ratio) 0 Net migration 1 Infant mortality (per 1000 births) 1 GDP ($ per capita) 0 Literacy (%) 0 Phones (per 1000) 2 Arable (%) 1 Crops (%) 1 Other (%) 1 Climate 0 Birthrate 1 Deathrate 2 Agriculture 0 Industry 1 Service 1 dtype: int64
TASK: Optional: We are now missing values for only a few countries. Go ahead and drop these countries OR feel free to fill in these last few remaining values with any preferred methodology. For simplicity, we will drop these.
df = df.dropna()
TASK: It is now time to prepare the data for clustering. The Country column is still a unique identifier string, so it won't be useful for clustering, since its unique for each point. Go ahead and drop this Country column.
X = df.drop("Country",axis=1)
TASK: Now let's create the X array of features, the Region column is still categorical strings, use Pandas to create dummy variables from this column to create a finalzed X matrix of continuous features along with the dummy variables for the Regions.
X = pd.get_dummies(X)
X.head()
Population | Area (sq. mi.) | Pop. Density (per sq. mi.) | Coastline (coast/area ratio) | Net migration | Infant mortality (per 1000 births) | GDP ($ per capita) | Literacy (%) | Phones (per 1000) | Arable (%) | ... | Region_BALTICS | Region_C.W. OF IND. STATES | Region_EASTERN EUROPE | Region_LATIN AMER. & CARIB | Region_NEAR EAST | Region_NORTHERN AFRICA | Region_NORTHERN AMERICA | Region_OCEANIA | Region_SUB-SAHARAN AFRICA | Region_WESTERN EUROPE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 31056997 | 647500 | 48.0 | 0.00 | 23.06 | 163.07 | 700.0 | 36.0 | 3.2 | 12.13 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 3581655 | 28748 | 124.6 | 1.26 | -4.93 | 21.52 | 4500.0 | 86.5 | 71.2 | 21.09 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 32930091 | 2381740 | 13.8 | 0.04 | -0.39 | 31.00 | 6000.0 | 70.0 | 78.1 | 3.22 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
3 | 57794 | 199 | 290.4 | 58.29 | -20.71 | 9.27 | 8000.0 | 97.0 | 259.5 | 10.00 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 71201 | 468 | 152.1 | 0.00 | 6.60 | 4.05 | 19000.0 | 100.0 | 497.2 | 2.22 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
5 rows × 29 columns
TASK: Due to some measurements being in terms of percentages and other metrics being total counts (population), we should scale this data first. Use Sklearn to scale the X feature matrics.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_X = scaler.fit_transform(X)
scaled_X
array([[ 0.0133285 , 0.01855412, -0.20308668, ..., -0.31544015, -0.54772256, -0.36514837], [-0.21730118, -0.32370888, -0.14378531, ..., -0.31544015, -0.54772256, -0.36514837], [ 0.02905136, 0.97784988, -0.22956327, ..., -0.31544015, -0.54772256, -0.36514837], ..., [-0.06726127, -0.04756396, -0.20881553, ..., -0.31544015, -0.54772256, -0.36514837], [-0.15081724, 0.07669798, -0.22840201, ..., -0.31544015, 1.82574186, -0.36514837], [-0.14464933, -0.12356132, -0.2160153 , ..., -0.31544015, 1.82574186, -0.36514837]])
TASK: Use a for loop to create and fit multiple KMeans models, testing from K=2-30 clusters. Keep track of the Sum of Squared Distances for each K value, then plot this out to create an "elbow" plot of K versus SSD. Optional: You may also want to create a bar plot showing the SSD difference from the previous cluster.
from sklearn.cluster import KMeans
ssd = []
for k in range(2,30):
model = KMeans(n_clusters=k)
model.fit(scaled_X)
#Sum of squared distances of samples to their closest cluster center.
ssd.append(model.inertia_)
plt.plot(range(2,30),ssd,'o--')
plt.xlabel("K Value")
plt.ylabel(" Sum of Squared Distances")
Text(0, 0.5, ' Sum of Squared Distances')
pd.Series(ssd).diff().plot(kind='bar')
<AxesSubplot:>
TASK: What K value do you think is a good choice? Are there multiple reasonable choices? What features are helping define these cluster choices. As this is unsupervised learning, there is no 100% correct answer here. Please feel free to jump to the solutions for a full discussion on this!.
# Nothing to really code here, but choose a K value and see what features
# are most correlated to belonging to a particular cluster!
# Remember, there is no 100% correct answer here!
One could say that there is a significant drop off in SSD difference at K=3 (although we can see it continues to drop off past this). What would an analysis look like for K=3? Let's explore which features are important in the decision of 3 clusters!
model = KMeans(n_clusters=3)
model.fit(scaled_X)
KMeans(n_clusters=3)
model.labels_
array([2, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 0, 0, 0, 2, 2, 2, 0, 2, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 1, 2, 1, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 1, 0, 2, 2, 0, 1, 1, 1, 1, 1, 2, 2, 0, 0, 2, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 1, 0, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 1, 1, 1, 0, 2, 2, 1, 0, 2, 0, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2])
X['K=3 Clusters'] = model.labels_
X.corr()['K=3 Clusters'].sort_values()
Region_LATIN AMER. & CARIB -0.391473 Literacy (%) -0.356732 Crops (%) -0.249597 Region_OCEANIA -0.239910 Region_NEAR EAST -0.216275 Region_C.W. OF IND. STATES -0.162629 Phones (per 1000) -0.159229 Coastline (coast/area ratio) -0.151001 Region_NORTHERN AFRICA -0.147564 Service -0.115617 Population -0.079099 Industry -0.049537 GDP ($ per capita) -0.026507 Region_ASIA (EX. NEAR EAST) -0.024180 Region_NORTHERN AMERICA -0.022315 Pop. Density (per sq. mi.) 0.009914 Area (sq. mi.) 0.016071 Arable (%) 0.026906 Region_BALTICS 0.040407 Region_EASTERN EUROPE 0.053287 Other (%) 0.060746 Climate 0.064518 Region_WESTERN EUROPE 0.125773 Net migration 0.228622 Agriculture 0.424803 Birthrate 0.446699 Infant mortality (per 1000 births) 0.580852 Region_SUB-SAHARAN AFRICA 0.702911 Deathrate 0.744673 K=3 Clusters 1.000000 Name: K=3 Clusters, dtype: float64
The best way to interpret this model is through visualizing the clusters of countries on a map! NOTE: THIS IS A BONUS SECTION. YOU MAY WANT TO JUMP TO THE SOLUTIONS LECTURE FOR A FULL GUIDE, SINCE WE WILL COVER TOPICS NOT PREVIOUSLY DISCUSSED AND BE HAVING A NUANCED DISCUSSION ON PERFORMANCE!
IF YOU GET STUCK, PLEASE CHECK OUT THE SOLUTIONS LECTURE. AS THIS IS OPTIONAL AND COVERS MANY TOPICS NOT SHOWN IN ANY PREVIOUS LECTURE
TASK: Create cluster labels for a chosen K value. Based on the solutions, we believe either K=3 or K=15 are reasonable choices. But feel free to choose differently and explore.
model = KMeans(n_clusters=15)
model.fit(scaled_X)
KMeans(n_clusters=15)
model = KMeans(n_clusters=3)
model.fit(scaled_X)
KMeans(n_clusters=3)
TASK: Let's put you in the real world! Your boss just asked you to plot out these clusters on a country level choropleth map, can you figure out how to do this? We won't step by step guide you at all on this, just show you an example result. You'll need to do the following:
Figure out how to install plotly library: https://plotly.com/python/getting-started/
Figure out how to create a geographical choropleth map using plotly: https://plotly.com/python/choropleth-maps/#using-builtin-country-and-state-geometries
You will need ISO Codes for this. Either use the wikipedia page, or use our provided file for this: "../DATA/country_iso_codes.csv"
Combine the cluster labels, ISO Codes, and Country Names to create a world map plot with plotly given what you learned in Step 1 and Step 2.
Note: This is meant to be a more realistic project, where you have a clear objective of what you need to create and accomplish and the necessary online documentation. It's up to you to piece everything together to figure it out! If you get stuck, no worries! Check out the solution lecture.
iso_codes = pd.read_csv(r"C:\Users\Teni\Desktop\Git-Github\DATA\country_iso_codes.csv")
iso_codes
Country | ISO Code | |
---|---|---|
0 | Afghanistan | AFG |
1 | Akrotiri and Dhekelia – See United Kingdom, The | Akrotiri and Dhekelia – See United Kingdom, The |
2 | Åland Islands | ALA |
3 | Albania | ALB |
4 | Algeria | DZA |
... | ... | ... |
296 | Congo, Dem. Rep. | COD |
297 | Congo, Repub. of the | COG |
298 | Tanzania | TZA |
299 | Central African Rep. | CAF |
300 | Cote d'Ivoire | CIV |
301 rows × 2 columns
iso_mapping = iso_codes.set_index('Country')['ISO Code'].to_dict()
iso_mapping
{'Afghanistan': 'AFG', 'Akrotiri and Dhekelia – See United Kingdom, The': 'Akrotiri and Dhekelia – See United Kingdom, The', 'Åland Islands': 'ALA', 'Albania': 'ALB', 'Algeria': 'DZA', 'American Samoa': 'ASM', 'Andorra': 'AND', 'Angola': 'AGO', 'Anguilla': 'AIA', 'Antarctica\u200a[a]': 'ATA', 'Antigua and Barbuda': 'ATG', 'Argentina': 'ARG', 'Armenia': 'ARM', 'Aruba': 'ABW', 'Ashmore and Cartier Islands – See Australia.': 'Ashmore and Cartier Islands – See Australia.', 'Australia\u200a[b]': 'AUS', 'Austria': 'AUT', 'Azerbaijan': 'AZE', 'Bahamas (the)': 'BHS', 'Bahrain': 'BHR', 'Bangladesh': 'BGD', 'Barbados': 'BRB', 'Belarus': 'BLR', 'Belgium': 'BEL', 'Belize': 'BLZ', 'Benin': 'BEN', 'Bermuda': 'BMU', 'Bhutan': 'BTN', 'Bolivia (Plurinational State of)': 'BOL', 'Bonaire\xa0Sint Eustatius\xa0Saba': 'BES', 'Bosnia and Herzegovina': 'BIH', 'Botswana': 'BWA', 'Bouvet Island': 'BVT', 'Brazil': 'BRA', 'British Indian Ocean Territory (the)': 'IOT', 'British Virgin Islands – See Virgin Islands (British).': 'British Virgin Islands – See Virgin Islands (British).', 'Brunei Darussalam\u200a[e]': 'BRN', 'Bulgaria': 'BGR', 'Burkina Faso': 'BFA', 'Burma – See Myanmar.': 'Burma – See Myanmar.', 'Burundi': 'BDI', 'Cabo Verde\u200a[f]': 'CPV', 'Cambodia': 'KHM', 'Cameroon': 'CMR', 'Canada': 'CAN', 'Cape Verde – See Cabo Verde.': 'Cape Verde – See Cabo Verde.', 'Caribbean Netherlands – See Bonaire, Sint Eustatius and Saba.': 'Caribbean Netherlands – See Bonaire, Sint Eustatius and Saba.', 'Cayman Islands (the)': 'CYM', 'Central African Republic (the)': 'CAF', 'Chad': 'TCD', 'Chile': 'CHL', 'China': 'CHN', 'China, The Republic of – See Taiwan (Province of China).': 'China, The Republic of – See Taiwan (Province of China).', 'Christmas Island': 'CXR', 'Clipperton Island – See France.': 'Clipperton Island – See France.', 'Cocos (Keeling) Islands (the)': 'CCK', 'Colombia': 'COL', 'Comoros (the)': 'COM', 'Congo (the Democratic Republic of the)': 'COD', 'Congo (the)\u200a[g]': 'COG', 'Cook Islands (the)': 'COK', 'Coral Sea Islands – See Australia.': 'Coral Sea Islands – See Australia.', 'Costa Rica': 'CRI', "Côte d'Ivoire\u200a[h]": 'CIV', 'Croatia': 'HRV', 'Cuba': 'CUB', 'Curaçao': 'CUW', 'Cyprus': 'CYP', 'Czechia\u200a[i]': 'CZE', "Democratic People's Republic of Korea – See Korea, The Democratic People's Republic of.": "Democratic People's Republic of Korea – See Korea, The Democratic People's Republic of.", 'Democratic Republic of the Congo – See Congo, The Democratic Republic of the.': 'Democratic Republic of the Congo – See Congo, The Democratic Republic of the.', 'Denmark': 'DNK', 'Djibouti': 'DJI', 'Dominica': 'DMA', 'Dominican Republic (the)': 'DOM', 'East Timor – See Timor-Leste.': 'East Timor – See Timor-Leste.', 'Ecuador': 'ECU', 'Egypt': 'EGY', 'El Salvador': 'SLV', 'England – See United Kingdom, The.': 'England – See United Kingdom, The.', 'Equatorial Guinea': 'GNQ', 'Eritrea': 'ERI', 'Estonia': 'EST', 'Eswatini\u200a[j]': 'SWZ', 'Ethiopia': 'ETH', 'Falkland Islands (the) [Malvinas]\u200a[k]': 'FLK', 'Faroe Islands (the)': 'FRO', 'Fiji': 'FJI', 'Finland': 'FIN', 'France\u200a[l]': 'FRA', 'French Guiana': 'GUF', 'French Polynesia': 'PYF', 'French Southern Territories (the)\u200a[m]': 'ATF', 'Gabon': 'GAB', 'Gambia (the)': 'GMB', 'Georgia': 'GEO', 'Germany': 'DEU', 'Ghana': 'GHA', 'Gibraltar': 'GIB', 'Great Britain – See United Kingdom, The.': 'Great Britain – See United Kingdom, The.', 'Greece': 'GRC', 'Greenland': 'GRL', 'Grenada': 'GRD', 'Guadeloupe': 'GLP', 'Guam': 'GUM', 'Guatemala': 'GTM', 'Guernsey': 'GGY', 'Guinea': 'GIN', 'Guinea-Bissau': 'GNB', 'Guyana': 'GUY', 'Haiti': 'HTI', 'Hawaiian Islands – See United States of America, The.': 'Hawaiian Islands – See United States of America, The.', 'Heard Island and McDonald Islands': 'HMD', 'Holy See (the)\u200a[n]': 'VAT', 'Honduras': 'HND', 'Hong Kong': 'HKG', 'Hungary': 'HUN', 'Iceland': 'ISL', 'India': 'IND', 'Indonesia': 'IDN', 'Iran (Islamic Republic of)': 'IRN', 'Iraq': 'IRQ', 'Ireland': 'IRL', 'Isle of Man': 'IMN', 'Israel': 'ISR', 'Italy': 'ITA', "Ivory Coast – See Côte d'Ivoire.": "Ivory Coast – See Côte d'Ivoire.", 'Jamaica': 'JAM', 'Jan Mayen – See Svalbard and Jan Mayen.': 'Jan Mayen – See Svalbard and Jan Mayen.', 'Japan': 'JPN', 'Jersey': 'JEY', 'Jordan': 'JOR', 'Kazakhstan': 'KAZ', 'Kenya': 'KEN', 'Kiribati': 'KIR', "Korea (the Democratic People's Republic of)\u200a[o]": 'PRK', 'Korea (the Republic of)\u200a[p]': 'KOR', 'Kuwait': 'KWT', 'Kyrgyzstan': 'KGZ', "Lao People's Democratic Republic (the)\u200a[q]": 'LAO', 'Latvia': 'LVA', 'Lebanon': 'LBN', 'Lesotho': 'LSO', 'Liberia': 'LBR', 'Libya': 'LBY', 'Liechtenstein': 'LIE', 'Lithuania': 'LTU', 'Luxembourg': 'LUX', 'Macao\u200a[r]': 'MAC', 'North Macedonia\u200a[s]': 'MKD', 'Madagascar': 'MDG', 'Malawi': 'MWI', 'Malaysia': 'MYS', 'Maldives': 'MDV', 'Mali': 'MLI', 'Malta': 'MLT', 'Marshall Islands (the)': 'MHL', 'Martinique': 'MTQ', 'Mauritania': 'MRT', 'Mauritius': 'MUS', 'Mayotte': 'MYT', 'Mexico': 'MEX', 'Micronesia (Federated States of)': 'FSM', 'Moldova (the Republic of)': 'MDA', 'Monaco': 'MCO', 'Mongolia': 'MNG', 'Montenegro': 'MNE', 'Montserrat': 'MSR', 'Morocco': 'MAR', 'Mozambique': 'MOZ', 'Myanmar\u200a[t]': 'MMR', 'Namibia': 'NAM', 'Nauru': 'NRU', 'Nepal': 'NPL', 'Netherlands (the)': 'NLD', 'New Caledonia': 'NCL', 'New Zealand': 'NZL', 'Nicaragua': 'NIC', 'Niger (the)': 'NER', 'Nigeria': 'NGA', 'Niue': 'NIU', 'Norfolk Island': 'NFK', "North Korea – See Korea, The Democratic People's Republic of.": "North Korea – See Korea, The Democratic People's Republic of.", 'Northern Ireland – See United Kingdom, The.': 'Northern Ireland – See United Kingdom, The.', 'Northern Mariana Islands (the)': 'MNP', 'Norway': 'NOR', 'Oman': 'OMN', 'Pakistan': 'PAK', 'Palau': 'PLW', 'Palestine, State of': 'PSE', 'Panama': 'PAN', 'Papua New Guinea': 'PNG', 'Paraguay': 'PRY', "People's Republic of China – See China.": "People's Republic of China – See China.", 'Peru': 'PER', 'Philippines (the)': 'PHL', 'Pitcairn\u200a[u]': 'PCN', 'Poland': 'POL', 'Portugal': 'PRT', 'Puerto Rico': 'PRI', 'Qatar': 'QAT', 'Republic of China – See Taiwan (Province of China).': 'Republic of China – See Taiwan (Province of China).', 'Republic of Korea – See Korea, The Republic of.': 'Republic of Korea – See Korea, The Republic of.', 'Republic of the Congo – See Congo, The.': 'Republic of the Congo – See Congo, The.', 'Réunion': 'REU', 'Romania': 'ROU', 'Russian Federation (the)\u200a[v]': 'RUS', 'Rwanda': 'RWA', 'Saba – See Bonaire, Sint Eustatius and Saba.': 'Saba – See Bonaire, Sint Eustatius and Saba.', 'Sahrawi Arab Democratic Republic – See Western Sahara.': 'Sahrawi Arab Democratic Republic – See Western Sahara.', 'Saint Barthélemy': 'BLM', 'Saint Helena\xa0Ascension Island\xa0Tristan da Cunha': 'SHN', 'Saint Kitts and Nevis': 'KNA', 'Saint Lucia': 'LCA', 'Saint Martin (French part)': 'MAF', 'Saint Pierre and Miquelon': 'SPM', 'Saint Vincent and the Grenadines': 'VCT', 'Samoa': 'WSM', 'San Marino': 'SMR', 'Sao Tome and Principe': 'STP', 'Saudi Arabia': 'SAU', 'Scotland – See United Kingdom, The.': 'Scotland – See United Kingdom, The.', 'Senegal': 'SEN', 'Serbia': 'SRB', 'Seychelles': 'SYC', 'Sierra Leone': 'SLE', 'Singapore': 'SGP', 'Sint Eustatius – See Bonaire, Sint Eustatius and Saba.': 'Sint Eustatius – See Bonaire, Sint Eustatius and Saba.', 'Sint Maarten (Dutch part)': 'SXM', 'Slovakia': 'SVK', 'Slovenia': 'SVN', 'Solomon Islands': 'SLB', 'Somalia': 'SOM', 'South Africa': 'ZAF', 'South Georgia and the South Sandwich Islands': 'SGS', 'South Korea – See Korea, The Republic of.': 'South Korea – See Korea, The Republic of.', 'South Sudan': 'SSD', 'Spain': 'ESP', 'Sri Lanka': 'LKA', 'Sudan (the)': 'SDN', 'Suriname': 'SUR', 'Svalbard\xa0Jan Mayen': 'SJM', 'Sweden': 'SWE', 'Switzerland': 'CHE', 'Syrian Arab Republic (the)\u200a[x]': 'SYR', 'Taiwan (Province of China)\u200a[y]': 'TWN', 'Tajikistan': 'TJK', 'Tanzania, the United Republic of': 'TZA', 'Thailand': 'THA', 'Timor-Leste\u200a[aa]': 'TLS', 'Togo': 'TGO', 'Tokelau': 'TKL', 'Tonga': 'TON', 'Trinidad and Tobago': 'TTO', 'Tunisia': 'TUN', 'Turkey': 'TUR', 'Turkmenistan': 'TKM', 'Turks and Caicos Islands (the)': 'TCA', 'Tuvalu': 'TUV', 'Uganda': 'UGA', 'Ukraine': 'UKR', 'United Arab Emirates (the)': 'ARE', 'United Kingdom of Great Britain and Northern Ireland (the)': 'GBR', 'United States Minor Outlying Islands (the)\u200a[ac]': 'UMI', 'United States of America (the)': 'USA', 'United States Virgin Islands – See Virgin Islands (U.S.).': 'United States Virgin Islands – See Virgin Islands (U.S.).', 'Uruguay': 'URY', 'Uzbekistan': 'UZB', 'Vanuatu': 'VUT', 'Vatican City – See Holy See, The.': 'Vatican City – See Holy See, The.', 'Venezuela (Bolivarian Republic of)': 'VEN', 'Viet Nam\u200a[ae]': 'VNM', 'Virgin Islands (British)\u200a[af]': 'VGB', 'Virgin Islands (U.S.)\u200a[ag]': 'VIR', 'Wales – See United Kingdom, The.': 'Wales – See United Kingdom, The.', 'Wallis and Futuna': 'WLF', 'Western Sahara\u200a[ah]': 'ESH', 'Yemen': 'YEM', 'Zambia': 'ZMB', 'Zimbabwe': 'ZWE', 'United States': 'USA', 'United Kingdom': 'GBR', 'Venezuela': 'VEN', 'Australia': 'AUS', 'Iran': 'IRN', 'France': 'FRA', 'Russia': 'RUS', 'Korea, North': 'PRK', 'Korea, South': 'KOR', 'Myanmar': 'MMR', 'Burma': 'MMR', 'Vietnam': 'VNM', 'Laos': 'LAO', 'Bolivia': 'BOL', 'Niger': 'NER', 'Sudan': 'SDN', 'Congo, Dem. Rep.': 'COD', 'Congo, Repub. of the': 'COG', 'Tanzania': 'TZA', 'Central African Rep.': 'CAF', "Cote d'Ivoire": 'CIV'}
df['ISO Code'] = df['Country'].map(iso_mapping)
df['Cluster'] = model.labels_
import plotly.express as px
fig = px.choropleth(df, locations="ISO Code",
color="Cluster", # lifeExp is a column of gapminder
hover_name="Country", # column to add to hover information
color_continuous_scale='Turbo'
)
fig.show()