Root finding




Trial and error

1. guess x1 (trial)

2. s f(x1) = 07 (error)
until error < eps
, (or iterations > max)
3. iImprove X1



Bisection

a<xy<b

fla)>0 and f(b) <0




Bisection

fla)>0 and f(c) <O

a<xy<c

Note:

flc)y<0 and f(b)<O0

— la, c] SO root xo is not in [c, b]



Bisection

fla)>0 and f(d) <0

a<xy<d
_ Note:
a d ¢ flc)<0 and f(d) <0
> > a, b]
D a, c] SO root xo is not in [d, ]
+—> :Cl, d]




Bisection

fle)>0 and f(d) <0

e <xy<d

Note:

fla)>0 and f(e)>0

< > [a,b]
— a, c] SO root xo is not in [a, €]
g a,d]

D d, €]




Bisection algorithm

i 1

1.bisect Y = E(a +b)
2.pick half with sign change
3.[f(x)| < eps ? it f(a)f(x) <O

Xy € la, x]

b «— x

else
Xy € [x, D]

a < X



Root finding with trial and error

%

1. guess x1 (trial)

2. s f(x1) = 07 (error)
until error < eps
, (or iterations > max)
3. improve X1



Newton-Raphson




Newton-Raphson

y(x) =mx+b

y(x) = f(x)x + by

X2=x1+Ax




Newton-Raphson




Newton-Raphson

y(x) =mx+ b

y(x) = f(x)x + by

X3 =Xy + Ax




NR algorithm

X)  initial guess for root B T /=t o
X updated guess
. X =Xxy+ Ax
X = x0+ Ax correction? <—§x0
AXx

df
f(.x = X0 + AX) %f(xO) + Ax—

dx %
fxp) + F(xp)Ax = 0 whie /1>

X = A
J'(xp)




Newton-Raphson

Advantages

e converges very quickly (quadratical convergencel!)
e fast

e works best with analytical derivative (but can use
numerical ones)

Disadvantages

 guess must be close to root

e can fail/loop in certain situations:



NR - FAILS!




NR - FAILS!

i




Improvements

e start with bisection to get close to root, then home in with
Newton-Raphson

* implement backtracking : if new guess increases error
then go back and try smaller guess

X < x+ Ax/2



Newton-Raphson

((x) =0




