
Root finding



Trial and error

1. guess x1 (trial)


2. Is f(x1) = 0? (error)


3. improve x1

until error < eps

(or iterations > max)



Bisection

a b

f(a)

f(b)

a < x0 < b

f(a) > 0 and f(b) < 0

x0

[a, b]



Bisection

f(a) > 0 and f(c) < 0

c
f(c)

a < x0 < c

f(c) < 0 and f(b) < 0

Note:

so  root x0 is not in [c, b]

a b

[a, b]
[a, c]

f(a)



Bisection

f(a) > 0 and f(d) < 0

c

f(d)

a < x0 < d

f(c) < 0 and f(d) < 0

Note:

so  root x0 is not in [d, c]

a

[a, b]
[a, c]
[a, d]

f(a)

d



Bisection

f(e) > 0 and f(d) < 0

f(e)
e < x0 < d

f(a) > 0 and f(e) > 0

Note:

so  root x0 is not in [a, e]

a

[a, b]
[a, c]
[a, d]

f(a)

de

[d, e]



Bisection algorithm

1.bisect


2.pick half with sign change


3.|f(x)| < eps ?

x =
1
2

(a + b)

f(a) f(x) < 0if

x0 ∈ [a, x]
b ← x

else
x0 ∈ [x, b]
a ← x



Root finding with trial and error

1. guess x1 (trial)


2. Is f(x1) = 0? (error)


3. improve x1

until error < eps

(or iterations > max)



Newton-Raphson

x1

x

Δx

1
f(x1)



Newton-Raphson

x1

x

Δx

1
f(x1)

x2

y(x) = mx + b

y(x) = f′ (x1)x + b1

x2 = x1 + Δx



Newton-Raphson

x2

x

Δx

2

f(x2)



Newton-Raphson

x2

x
2

f(x2)

y(x) = mx + b

y(x) = f′ (x2)x + b2

x3 = x2 + Δx

Δx



NR algorithm
x0

x = x0+Δx

initial guess for root

correction?

f(x = x0 + Δx) ≈ f(x0) + Δx
df
dx x0

f(x0) + f′ (x0)Δx = 0

Δx = −
f(x0)
f′ (x0)

while | f(x) | > ϵ

Δx = −
f(x)
f′ (x)

x ← x + Δx

x updated guess

x0

Δx

x

y(x) = f′ (x0)(x − x0) + f(x0)

x = x0 + Δx



Newton-Raphson
• converges very quickly (quadratical convergence!!)


• fast


• works best with analytical derivative (but can use 
numerical ones)

• guess must be close to root


• can fail/loop in certain situations:

Advantages

Disadvantages



NR – FAILS!

3

Computational Methods in Physics (ASU PHY494) 
Copyright © 2019 Oliver Beckstein. CC-BY 4.0 https://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/

3



NR – FAILS!

3

Computational Methods in Physics (ASU PHY494) 
Copyright © 2019 Oliver Beckstein. CC-BY 4.0 https://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/

3



Improvements

• start with bisection to get close to root, then home in with 
Newton-Raphson


• implement backtracking : if new guess increases error 
then go back and try smaller guess

x ← x + Δx/2



Newton-RaphsonComputational Methods in Physics (ASU PHY494) 
Copyright © 2019 Oliver Beckstein. CC-BY 4.0 https://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/

2


