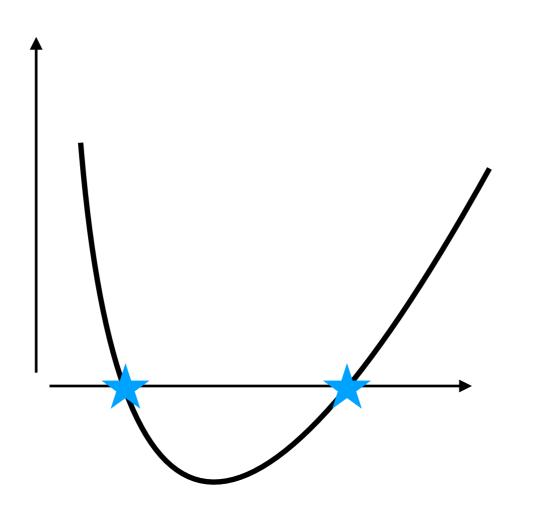
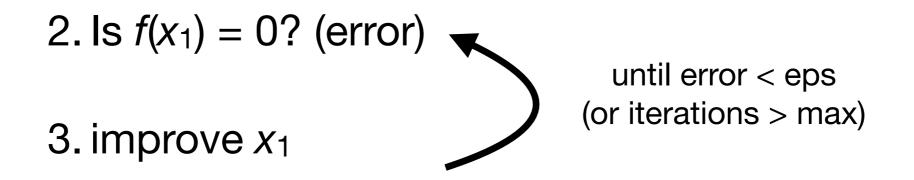
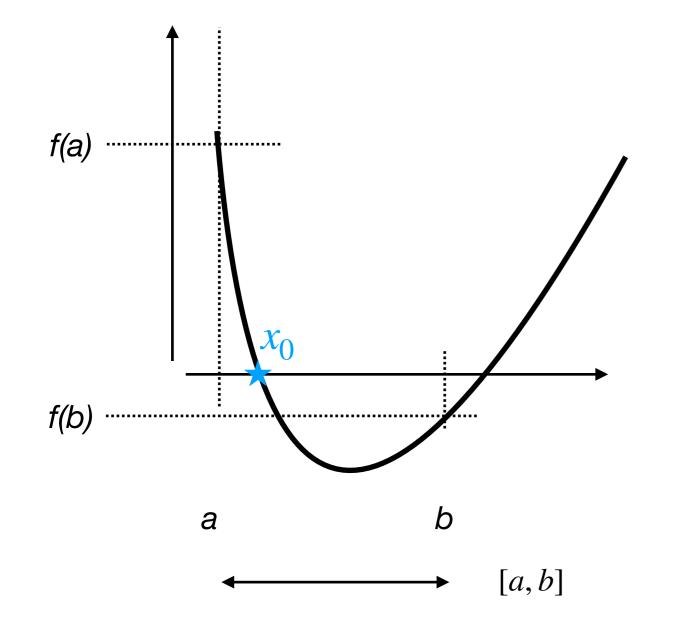
Root finding



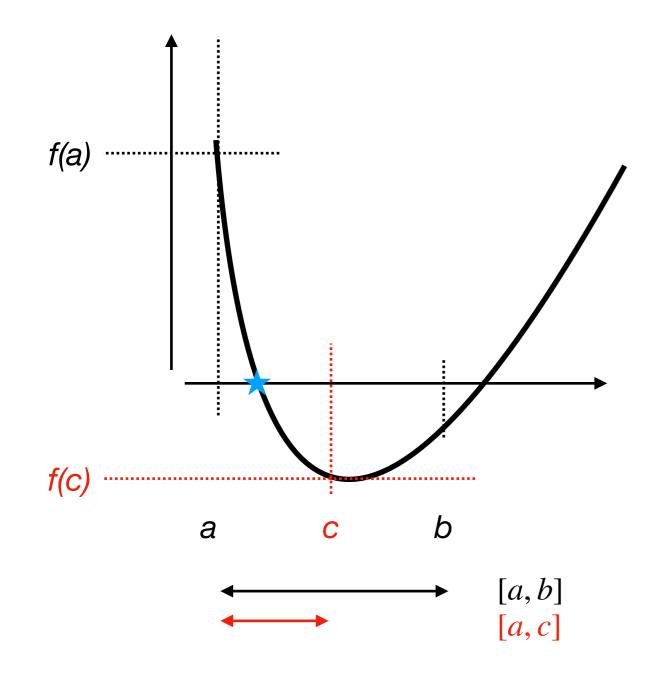
Trial and error

1. guess x_1 (trial)





 $a < x_0 < b$ f(a) > 0 and f(b) < 0

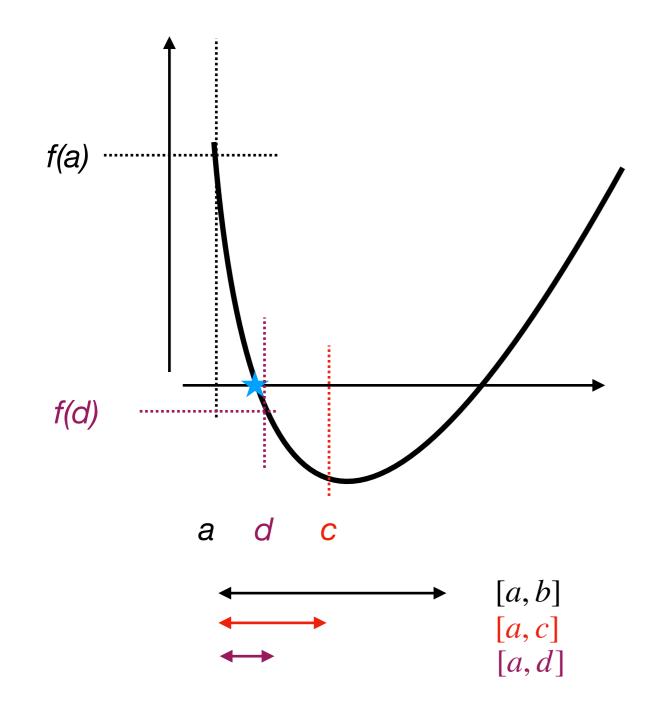


$$f(a) > 0$$
 and $f(c) < 0$
 $a < x_0 < c$

Note:

f(c) < 0 and f(b) < 0

so root x_0 is *not* in [c, b]

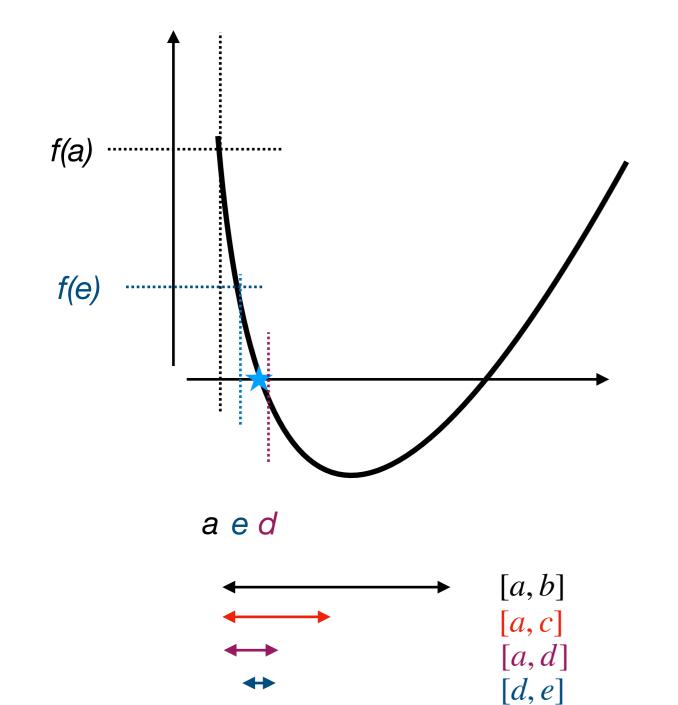


f(a) > 0 and f(d) < 0 $a < x_0 < d$

Note:

f(c) < 0 and f(d) < 0

so root x₀ is not in [d, c]



f(e) > 0 and f(d) < 0 $e < x_0 < d$

Note:

f(a) > 0 and f(e) > 0

so root x_0 is *not* in [a, e]

Bisection algorithm

1.bisect

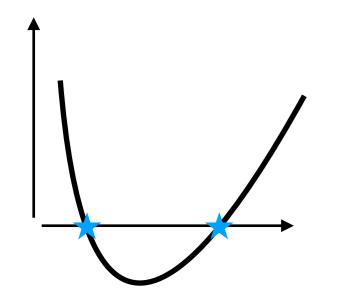
2.pick half with sign change

3.|f(x)| < eps ?

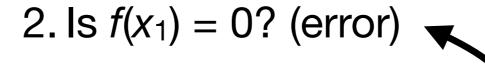
$$x = \frac{1}{2}(a+b)$$

$$\begin{array}{ll} \text{if} \quad f(a)f(x) < 0 \\ \quad x_0 \in [a,x] \\ \quad b \leftarrow x \\ \text{else} \\ \quad x_0 \in [x,b] \\ \quad a \leftarrow x \end{array} \end{array}$$

Root finding with trial and error

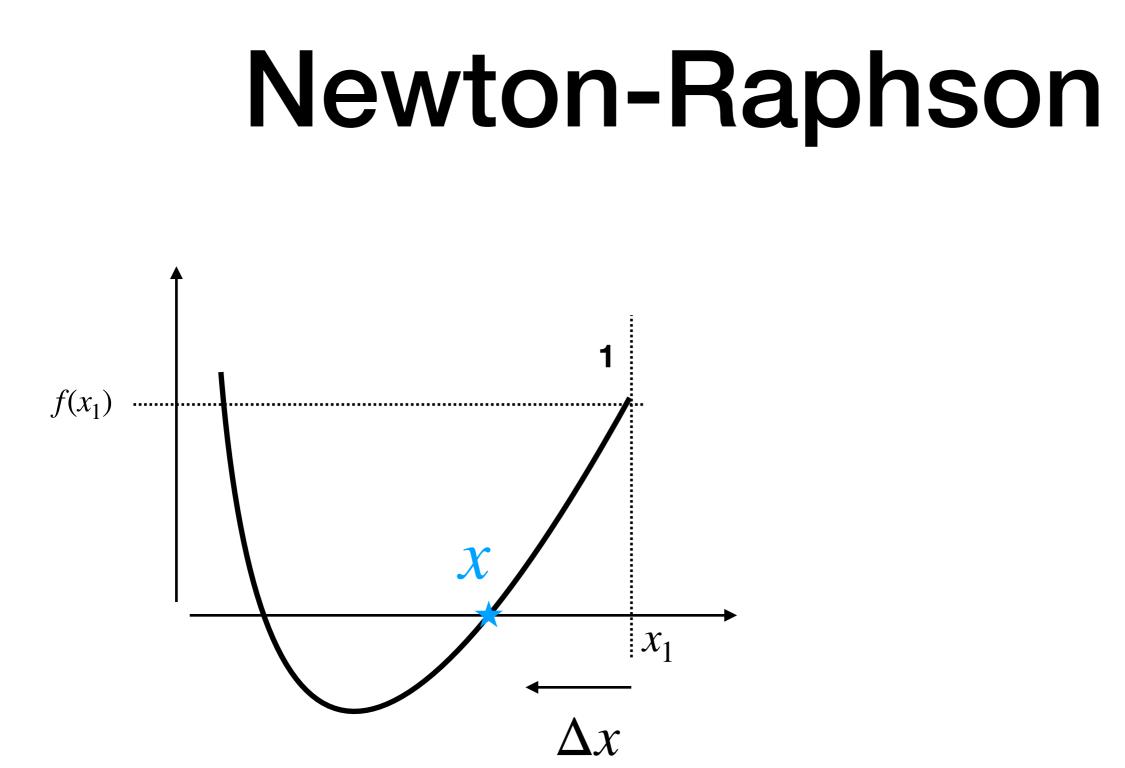


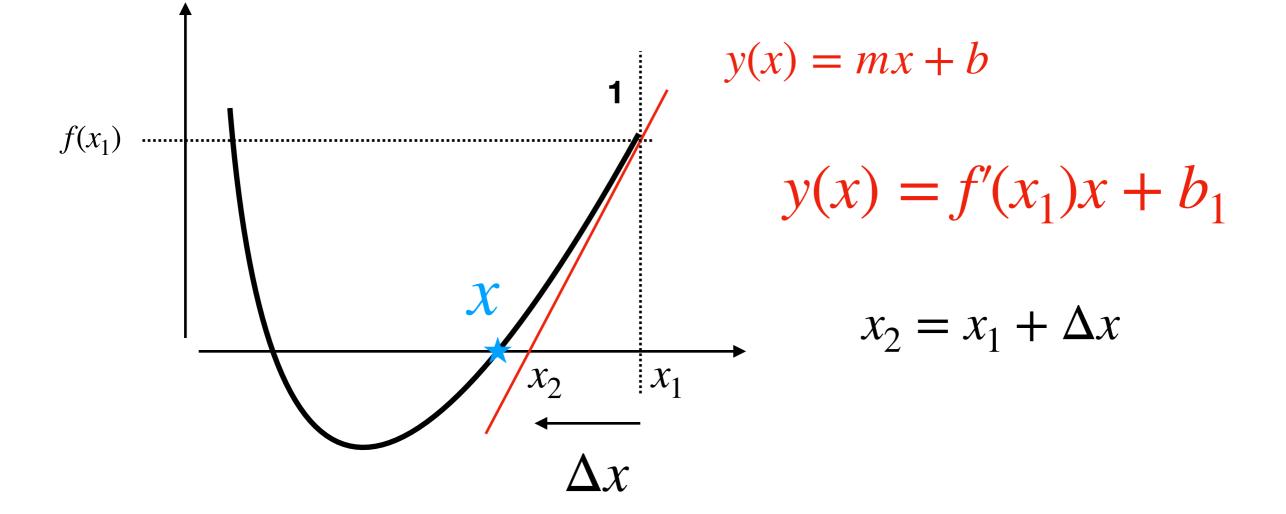
1. guess x_1 (trial)

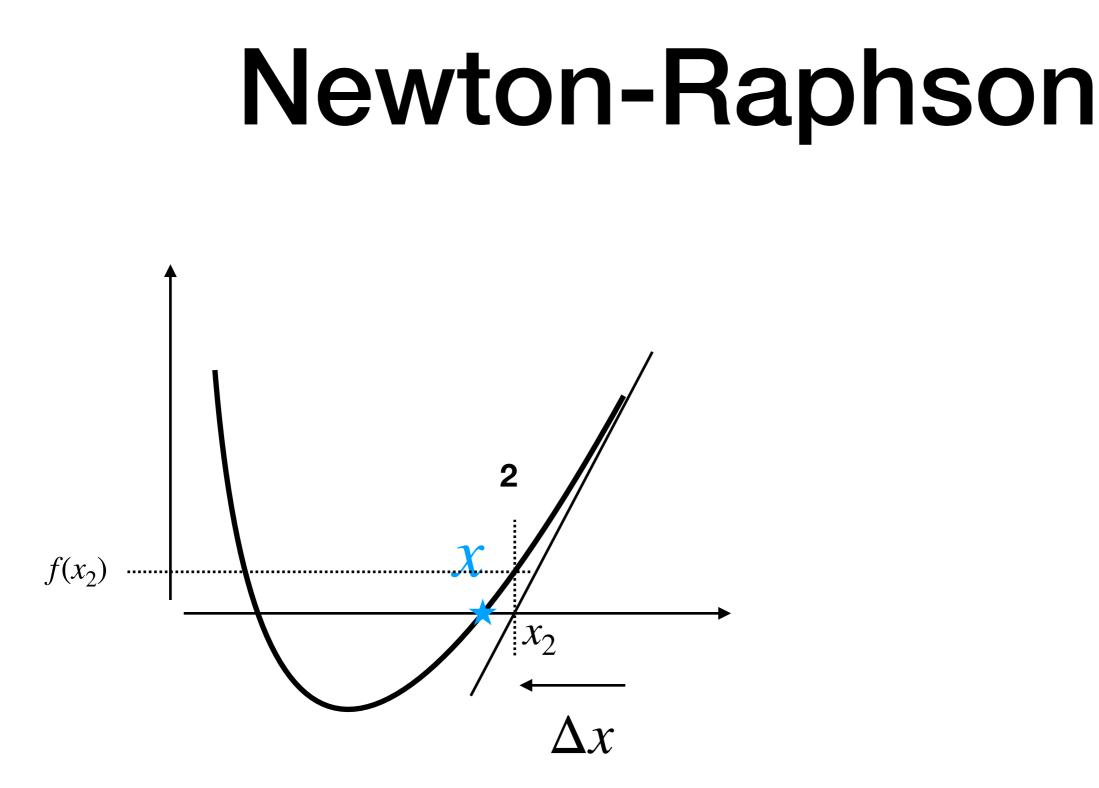


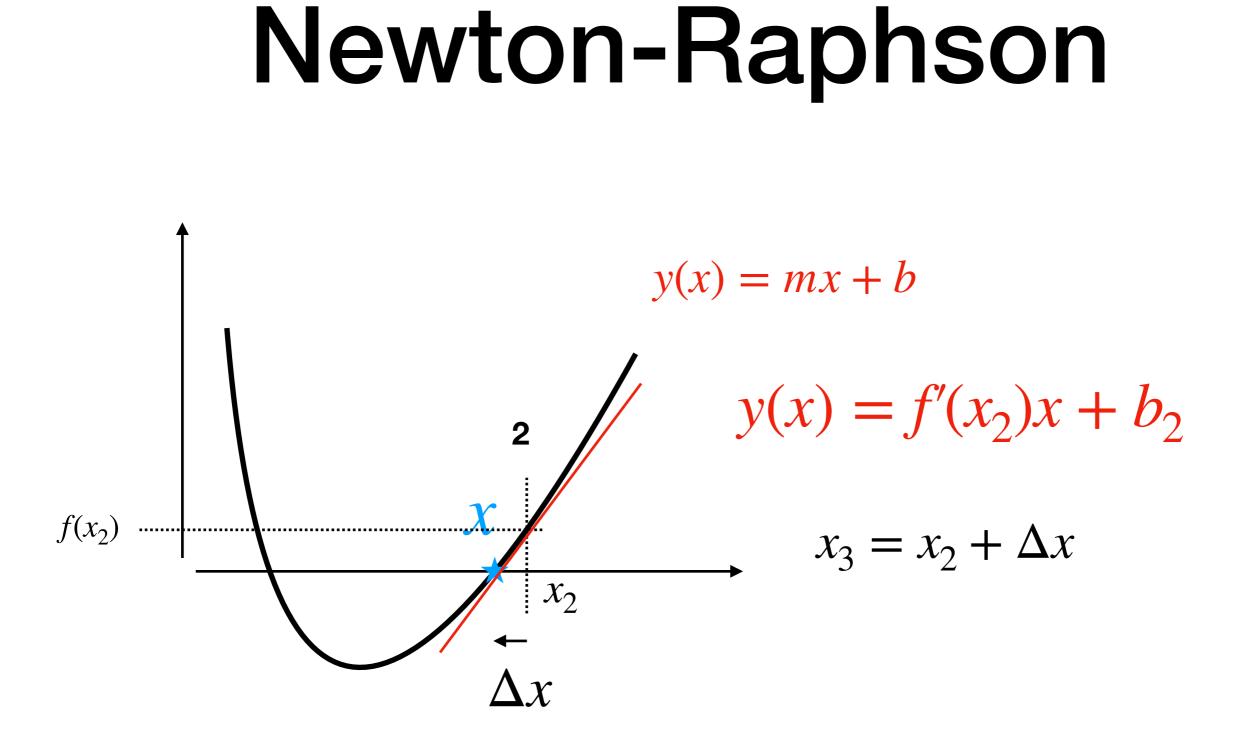
3. improve x_1

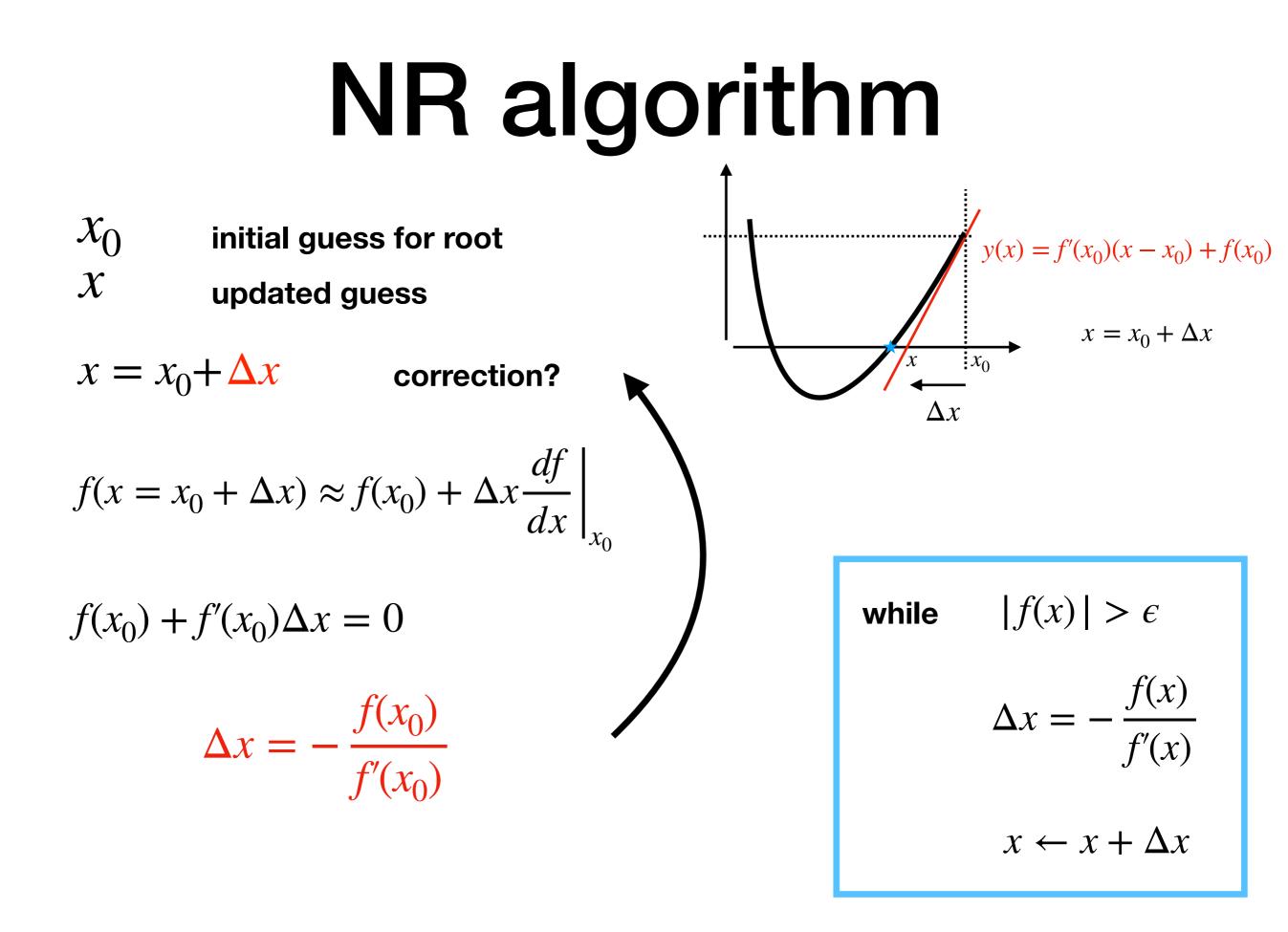
until error < eps (or iterations > max)











Newton-Raphson

Advantages

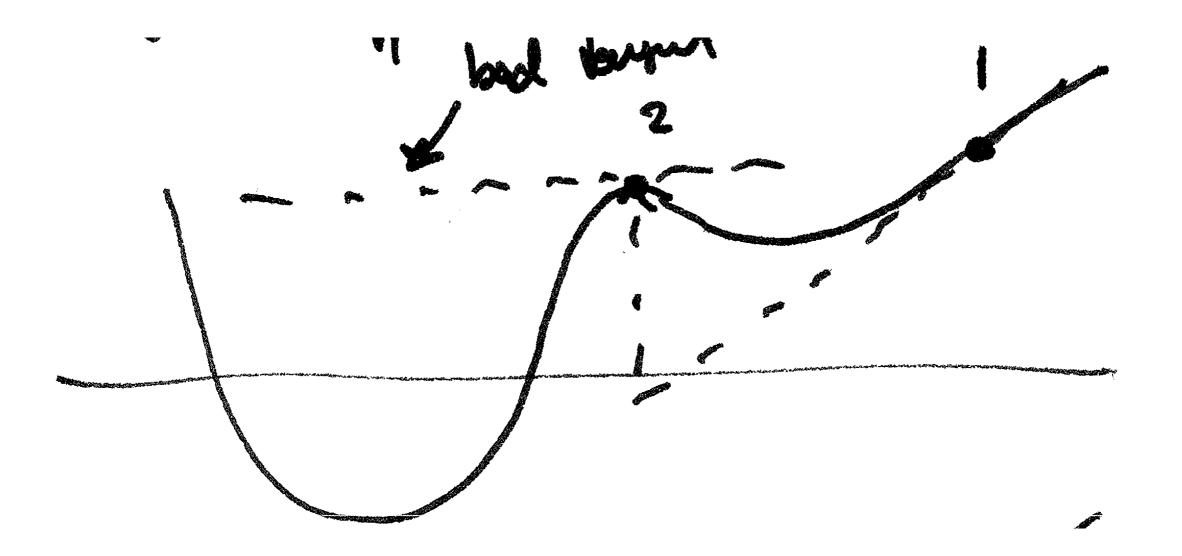
- converges very quickly (quadratical convergence!!)
- fast
- works best with analytical derivative (but can use numerical ones)

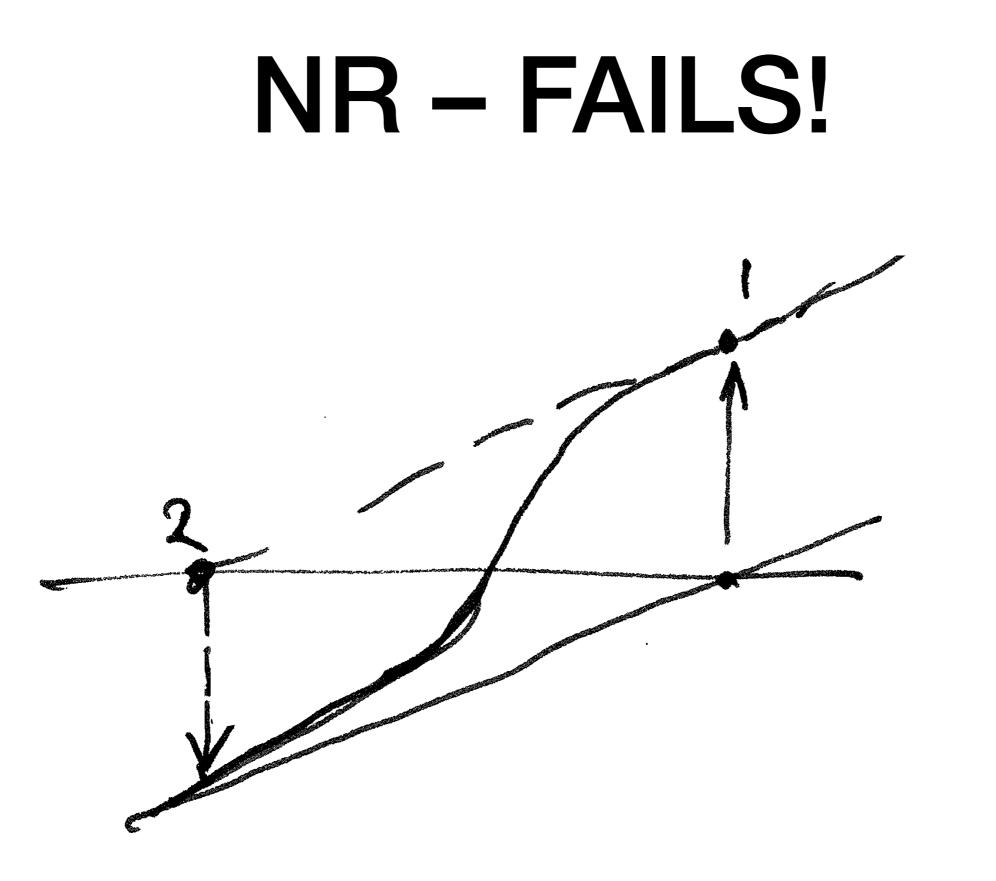
Disadvantages

- guess must be close to root
- can fail/loop in certain situations:

Copyright © 2019 Oliver Beckstein. CC-BY 4.0

NR – FAILS!





Improvements

- start with bisection to get close to root, then home in with Newton-Raphson
- implement backtracking : if new guess increases error then go back and try smaller guess

$$x \leftarrow x + \Delta x/2$$

Computational Methods Provides Store August Copyright © 2019 Oliver Beckstein. CC-BY 4.0

