import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib as mpl
import netCDF4 as nc
import datetime as dt
from salishsea_tools import evaltools as et, places, viz_tools, visualisations
import xarray as xr
import pandas as pd
import pickle
import os
%matplotlib inline
start=dt.datetime(2018,2,15)
end=dt.datetime(2018,6,15)
year=str(start.year)
modver='201812'
loc='S3'
# lat and lon informatin for place:
lon,lat=places.PLACES['S3']['lon lat']
# get place information on SalishSeaCast grid:
ij,ii=places.PLACES['S3']['NEMO grid ji']
# GEM2.5 grid ji is atm forcing grid for ops files
jw,iw=places.PLACES['S3']['GEM2.5 grid ji']
fig, ax = plt.subplots(1,1,figsize = (6,6))
with nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/bathymetry_201702.nc') as grid:
viz_tools.plot_coastline(ax, grid, coords ='map', isobath=.1)
ax.plot(lon, lat, '.', markersize=14, color='red')
ax.set_ylim(48,50)
ax.set_xlim(-125,-122)
ax.set_title('Location of Station S3')
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
Text(0, 0.5, 'Latitude')
savedir='/ocean/aisabell/MEOPAR/extracted_files'
#savedir='/data/eolson/results/MEOPAR'
fname=f'springTimeSeries_{year}_{loc}_{modver}.pkl'
savepath=os.path.join(savedir,fname)
recalc=False
if recalc==True or not os.path.isfile(savepath):
basedir='/results/SalishSea/nowcast-green.201812/'
nam_fmt='nowcast'
flen=1 # files contain 1 day of data each
ftype= 'ptrc_T' # load bio files
tres=24 # 1: hourly resolution; 24: daily resolution
flist=et.index_model_files(start,end,basedir,nam_fmt,flen,ftype,tres)
# flist contains paths: file pathes; t_0 timestemp of start of each file; t_n: timestamp of start of next file
# a list of the files we want between start and end date
print(flist)
fliste3t = et.index_model_files(start,end,basedir,nam_fmt,flen,"carp_T",tres)
ik=0
with xr.open_mfdataset(flist['paths']) as bio:
bio_time=np.array(bio.time_centered[:])
sno3=np.array(bio.nitrate.isel(deptht=ik,y=ij,x=ii))
sdiat=np.array(bio.diatoms.isel(deptht=ik,y=ij,x=ii))
sflag=np.array(bio.flagellates.isel(deptht=ik,y=ij,x=ii))
scili=np.array(bio.ciliates.isel(deptht=ik,y=ij,x=ii))
no3_alld=np.array(bio.nitrate.isel(y=ij,x=ii))
diat_alld=np.array(bio.diatoms.isel(y=ij,x=ii))
flag_alld=np.array(bio.flagellates.isel(y=ij,x=ii))
cili_alld=np.array(bio.ciliates.isel(y=ij,x=ii))
with xr.open_mfdataset(fliste3t['paths']) as carp:
intdiat=np.array(np.sum(bio.diatoms.isel(y=ij,x=ii)*carp.e3t.isel(y=ij,x=ii),1)) # depth integrated diatom
intphyto=np.array(np.sum((bio.diatoms.isel(y=ij,x=ii)+bio.flagellates.isel(y=ij,x=ii)\
+bio.ciliates.isel(y=ij,x=ii))*carp.e3t.isel(y=ij,x=ii),1))
spar=np.array(carp.PAR.isel(deptht=ik,y=ij,x=ii))
fracdiat=intdiat/intphyto # depth integrated fraction of diatoms
sphyto=sdiat+sflag+scili
phyto_alld=diat_alld+flag_alld+cili_alld
percdiat=sdiat/sphyto # percent diatoms
opsdir='/results/forcing/atmospheric/GEM2.5/operational'
flist2=et.index_model_files(start,end,opsdir,nam_fmt='ops',flen=1,ftype='None',tres=24)
with xr.open_mfdataset(flist2['paths']) as winds:
u_wind=np.array(winds.u_wind.isel(y=jw,x=iw))
v_wind=np.array(winds.v_wind.isel(y=jw,x=iw))
twind=np.array(winds.time_counter)
solar=np.array(winds.solar.isel(y=jw,x=iw))
# wind speed:
wspeed=np.sqrt(u_wind**2 + v_wind**2)
# wind direction in degrees from east
d = np.arctan2(v_wind, u_wind)
winddirec=np.rad2deg(d + (d < 0)*2*np.pi)
# reading Fraser river flow files
dfFra=pd.read_csv('/ocean/eolson/MEOPAR/obs/ECRivers/Flow/FraserHopeDaily__Dec-2-2020_10_31_05PM.csv',
skiprows=1)
# the original file contains both flow and water level information in the same field (Value)
# keep only the flow data, where PARAM=1 (drop PARAM=2 values, water level data)
# flow units are m3/s
# DD is YD, year day (ie. 1 is jan 1)
dfFra.drop(dfFra.loc[dfFra.PARAM==2].index,inplace=True)
# rename 'Value' column to 'Flow' now that we have removed all the water level rows
dfFra.rename(columns={'Value':'Flow'}, inplace=True)
# inplace=True does this function on the orginal dataframe
# no time information so use dt.date
dfFra['Date']=[dt.date(iyr,1,1)+dt.timedelta(days=idd-1) for iyr, idd in zip(dfFra['YEAR'],dfFra['DD'])]
# taking the value from the yr column, jan1st date, and making jan1 column to be 1 not 0
dfFra.head(2)
# select portion of dataframe in desired date range
dfFra2=dfFra.loc[(dfFra.Date>=start.date())&(dfFra.Date<=end.date())]
riv_time=dfFra2['Date'].values
rivFlow=dfFra2['Flow'].values
# could also write dfFra['Date'], sometimes this is required
# newstart is a datetime object, so we convert it to just a date with .date
pickle.dump((bio_time,sno3,sdiat,sflag,scili,diat_alld,no3_alld,flag_alld,cili_alld,phyto_alld,intdiat,intphyto,spar,fracdiat,sphyto,percdiat,
u_wind,v_wind,twind,solar,wspeed,winddirec,riv_time,rivFlow),open(savepath,'wb'))
else:
bio_time,sno3,sdiat,sflag,scili,diat_alld,no3_alld,flag_alld,cili_alld,phyto_alld,intdiat,intphyto,spar,fracdiat,sphyto,percdiat,\
u_wind,v_wind,twind,solar,wspeed,winddirec,riv_time,rivFlow=pickle.load(open(savepath,'rb'))
a) Average phytoplankton concentration over upper 3 m
b) Average nitrate over upper 3 m
c) Find first location where nitrate crosses below 0.5 micromolar and stays there for 2 days
d) Find date with maximum phytoplankton concentration within four days (say 9 day window) of date in c).
bloomtime1=bloomdrivers.metric1_bloomtime(phyto_alld,no3_alld,bio_time)
print(f'The spring phytoplankton bloom according to metric 1 occurs at {bloomtime1}')
The spring phytoplankton bloom according to metric 1 occurs at 2018-04-17 12:00:00
Take first peak, check if it has two days around have concentrations>5, if no, move to next peak
bloomtime2=bloomdrivers.metric2_bloomtime(sphyto,sno3,bio_time)
print(f'The spring phytoplankton bloom according to metric 2 occurs at {bloomtime2}')
The spring phytoplankton bloom according to metric 2 occurs at 2018-03-13 12:00:00
The median + 5% of the annual Chl concentration is deemed “threshold value” for each year.
bloomtime3=bloomdrivers.metric3_bloomtime(sphyto,sno3,bio_time)
print(f'The spring phytoplankton bloom according to metric 3 occurs at {bloomtime3}')
The spring phytoplankton bloom according to metric 3 occurs at 2018-03-11 00:00:00
fig,ax=plt.subplots(1,1,figsize=(12,3))
p1=ax.plot(bio_time,sphyto,
'-',color='forestgreen',label='Phytoplankton')
p2=ax.plot(bio_time,sno3,
'-',color='orange',label='Nitrate')
ax.legend(handles=[p1[0],p2[0]],loc=1)
ax.set_ylabel('Concentration ($\mu$M N)')
ax.set_title('Surface Phytoplankton and Nitrate at Station S3')
ax.axvline(x=bloomtime1, label='Metric 1 Bloom Date:{}'.format(bloomtime1), color='r')
ax.axvline(x=bloomtime2, label='Metric 2 Bloom Date:{}'.format(bloomtime2), color='k')
ax.axvline(x=bloomtime3, label='Metric 3 Bloom Date:{}'.format(bloomtime3), color='b')
ax.legend()
<matplotlib.legend.Legend at 0x7fa070877970>
fig,ax=plt.subplots(1,1,figsize=(12,3))
ax.plot(bio_time,percdiat, '-',color='orchid')
ax.set_ylabel('Diatoms / Total Phytoplankton')
ax.set_title('Fraction of Diatoms in Total Surface Phytoplankton')
ax.set_ylim(0,1)
(0.0, 1.0)
%%time
fig,ax=plt.subplots(1,1,figsize=(12,3))
ax.plot(bio_time,intphyto,'-',color='forestgreen',label='Phytoplankton')
ax.legend(loc=2);
ax.set_ylabel('Concentration (mmol N/m2)')
ax.set_xlim(bio_time[0],bio_time[-1])
ax.set_title('Depth Integrated Phytoplankton Concentration')
CPU times: user 20 ms, sys: 0 ns, total: 20 ms Wall time: 17.6 ms
Text(0.5, 1.0, 'Depth Integrated Phytoplankton Concentration')
%%time
fig,ax=plt.subplots(1,1,figsize=(12,3))
ax.plot(bio_time,fracdiat,'-',color='orchid')
ax.set_ylabel('Diatoms / Total Phytoplankton')
ax.set_xlim(bio_time[0],bio_time[-1])
ax.set_title('Fraction of Diatoms in Total Depth Integrated Phytoplankton')
ax.set_ylim(0,1)
CPU times: user 12 ms, sys: 4 ms, total: 16 ms Wall time: 16.7 ms
(0.0, 1.0)
# plot phytoplankton on top:
fig,ax1=plt.subplots(1,1,figsize=(12,3))
p1=ax1.plot(bio_time,sphyto,
'-',color='forestgreen',label='Phytoplankton')
p2=ax1.plot(bio_time,sno3,
'-',color='orange',label='Nitrate')
ax1.set_ylabel('Concentration ($\mu$M N)')
ax1.set_ylim(0,18)
# Now plot Fraser Flow
ax2=ax1.twinx()
p3=ax2.plot(riv_time,rivFlow,'c-', label='Fraser Flow')
ax2.set_ylabel('Flow (m$^3$s$^{-1}$)')
ax2.set_title('Fraser Flow at Hope and Surface Phytoplankton at Station S3')
ax1.legend(handles=[p1[0],p2[0],p3[0]],loc='upper center')
<matplotlib.legend.Legend at 0x7f8843fccd60>
fig,ax=plt.subplots(1,1,figsize=(18,2))
ax.plot(twind,u_wind,'c-')
ax.plot(twind,v_wind,'b-')
ax.set_xlim(start,end)
ax.set_title('Wind speed')
ax.set_ylabel('m/s')
Text(0, 0.5, 'm/s')
fig,ax=plt.subplots(1,1,figsize=(20,6))
q=ax.quiver(twind, np.zeros(len(twind)), u_wind, v_wind,scale=200, width=0.001); # change the scale
ax.set_yticklabels([]);
fig.autofmt_xdate(bottom=0.3, rotation=30, ha='right')
yearsFmt = mdates.DateFormatter('%b %d')
ax.xaxis.set_major_formatter(yearsFmt)
ax.set_xlim(start,end)
ax.set_title('Wind Vectors in Geographic Coordinates')
# this can probably be done better?
Text(0.5, 1.0, 'Wind Vectors in Geographic Coordinates')
# calculate daily average wind speed:
ttday=twind[12::24] # start at 12th value and take every 24th
wsdaily=list()
for ii in range(0,int(len(wspeed)/24)):
wsdaily.append(np.mean(wspeed[(ii*24):((ii+1)*24)]))
wsdaily=np.array(wsdaily) # convert to numpy array from list to be able to plot
fig,ax=plt.subplots(1,1,figsize=(18,2))
ax.plot(ttday,wsdaily,'b-')
ax.set_xlim(start,end)
ax.set_title('Daily average wind speed')
ax.set_ylabel('m/s')
Text(0, 0.5, 'm/s')
wscubed=wsdaily**3
# plot phytoplankton on top:
fig,ax1=plt.subplots(1,1,figsize=(12,3))
p1=ax1.plot(bio_time,sphyto,
'-',color='forestgreen',label='Phytoplankton')
p2=ax1.plot(bio_time,sno3,
'-',color='orange',label='Nitrate')
ax1.set_ylabel('Concentration ($\mu$M N)')
ax1.set_ylim(0,18)
ax2=ax1.twinx()
p3=ax2.plot(ttday,wscubed,'b-',label='Wind Speed Cubed')
ax2.set_xlim(start,end)
ax2.set_title('Daily Average Wind Speed cubed and Surface Phytoplankton at Station S3')
ax2.set_ylabel('$\mathregular{m^3}$/$\mathregular{s^3}$')
ax1.legend(handles=[p1[0],p2[0],p3[0]],loc='upper center')
<matplotlib.legend.Legend at 0x7f8848479640>
# plot phytoplankton on top:
fig,ax1=plt.subplots(1,1,figsize=(12,3))
p1=ax1.plot(bio_time,sphyto,
'-',color='forestgreen',label='Phytoplankton')
p2=ax1.plot(bio_time,sno3,
'-',color='orange',label='Nitrate')
ax1.set_ylabel('Concentration ($\mu$M N)')
ax1.set_ylim(0,18)
ax2=ax1.twinx()
p3=ax2.plot(bio_time,spar,
'-',color='red',label='Model PAR')
ax2.set_ylabel('PAR (W/$\mathregular{m^2}$)') # say its model PAR
ax2.set_title('Modeled PAR and Surface Phytoplankton at Station S3')
ax1.legend(handles=[p1[0],p2[0],p3[0]],loc='center left')
<matplotlib.legend.Legend at 0x7f8821e48310>
fig,ax=plt.subplots(1,1,figsize=(18,2))
ax.plot(twind,solar,'r-')
ax.set_xlim(start,end)
ax.set_title('Solar radiation')
ax.set_ylabel('W/$\mathregular{m^2}$')
Text(0, 0.5, 'W/$\\mathregular{m^2}$')
# calculate daily average solar radiation:
ttday=twind[12::24] # start at 12th value and take every 24th
solardaily=list()
for ii in range(0,int(len(solar)/24)):
solardaily.append(np.mean(solar[(ii*24):((ii+1)*24)]))
solardaily=np.array(solardaily) # convert to numpy array from list to be able to plot
# plot phytoplankton on top:
fig,ax1=plt.subplots(1,1,figsize=(12,3))
p1=ax1.plot(bio_time,sphyto,
'-',color='forestgreen',label='Phytoplankton')
p2=ax1.plot(bio_time,sno3,
'-',color='orange',label='Nitrate')
ax1.set_ylabel('Concentration ($\mu$M N)')
ax1.set_ylim(0,18)
ax2=ax1.twinx()
p3=ax2.plot(ttday,solardaily,'m-',label='Solar Radiation')
ax2.set_xlim(start,end)
ax2.set_title('Daily Average Solar Radiation and Surface Phytoplankton at Station S3')
ax2.set_ylabel('W/$\mathregular{m^2}$')
ax1.legend(handles=[p1[0],p2[0],p3[0]],loc='upper center')
<matplotlib.legend.Legend at 0x7f8821c3e340>