compare_tide_prediction_max_ssh
Figure Module¶Development of functions for nowcast.figures.publish.compare_tide_prediction_max_ssh
web site figure module.
from datetime import timedelta
from pathlib import Path
from types import SimpleNamespace
import arrow
from matplotlib import gridspec
import matplotlib.dates
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import netCDF4
import numpy
import requests
import xarray
from salishsea_tools import data_tools, viz_tools, wind_tools
from salishsea_tools.places import PLACES
from nowcast.figures import shared
import nowcast.figures.website_theme
%matplotlib inline
_get_ssh_forecast()
Function¶def _get_ssh_forecast(place, dataset_url_tmpl):
## TODO: This is a work-around because neither netCDF4 nor xarray are able
## to load the dataset directly from the URL due to an OpenDAP issue
dataset_url = dataset_url_tmpl.format(place=place.replace(" ", ""))
dataset_id = dataset_url.rsplit('/', 1)[1]
ssh_file = Path('/tmp').joinpath(dataset_id).with_suffix('.nc')
with ssh_file.open('wb') as f:
resp = requests.get(f'{dataset_url}.nc')
f.write(resp.content)
ssh_forecast = xarray.open_dataset(ssh_file)
return ssh_forecast
_prep_plot_data()
Function¶def _prep_plot_data(
place, ssh_fcst_dataset_url_tmpl, tidal_predictions, forecast_hrs, weather_path, bathy, grid_T_hr_path
):
# NEMO sea surface height forecast dataset
ssh_forecast = _get_ssh_forecast(place, ssh_fcst_dataset_url_tmpl)
# CHS water level observations dataset
try:
obs_1min = data_tools.get_chs_tides(
'obs', place,
arrow.get(str(ssh_forecast.time[0].values)) - timedelta(seconds=5*60),
arrow.get(str(ssh_forecast.time[-1].values))
)
obs_10min_avg = xarray.DataArray(obs_1min.resample('10min', loffset='5min').mean())
obs = xarray.Dataset({'water_level': obs_10min_avg.rename({'dim_0': 'time'})})
except TypeError:
# Invalid tide gauge station number, probably None
obs = None
shared.localize_time(ssh_forecast)
try:
shared.localize_time(obs)
except (IndexError, AttributeError):
# No observations available
obs = None
model_ssh_period = slice(str(ssh_forecast.time.values[0]), str(ssh_forecast.time.values[-1]))
forecast_period = slice(str(ssh_forecast.time.values[-forecast_hrs*6]), str(ssh_forecast.time.values[-1]))
try:
obs_period = slice(str(obs.time.values[0]), str(obs.time.values[-1]))
except AttributeError:
# No observations available
obs_period = None
# Predicted tide water levels dataset from ttide
ttide = shared.get_tides(place, tidal_predictions)
ttide.rename(columns={' pred_noshallow ': 'pred_noshallow'}, inplace=True)
ttide.index = ttide.time
ttide_ds = xarray.Dataset.from_dataframe(ttide)
shared.localize_time(ttide_ds, local_datetime=arrow.get(str(ssh_forecast.time.values[0])).to('local'))
# NEMO sea surface height dataset corrected to include unmodeled tide constituents
ssh_correction = ttide_ds.pred_noshallow.sel(time=model_ssh_period) - ttide_ds.pred_8.sel(time=model_ssh_period)
ssh_corrected = ssh_forecast + ssh_correction
# Mean sea level and extreme water levels
msl = PLACES[place]['mean sea lvl']
extreme_ssh = PLACES[place]['hist max sea lvl']
max_tides = ttide.pred_all.max() + msl
mid_tides = 0.5 * (extreme_ssh - max_tides) + max_tides
thresholds = (max_tides, mid_tides, extreme_ssh)
max_ssh = ssh_corrected.ssh.sel(time=forecast_period)
max_ssh = max_ssh.where(max_ssh==max_ssh.max(), drop=True).squeeze()
# Residual differences between corrected model and observations and predicted tides
model_residual = ssh_corrected - ttide_ds.pred_all.sel(time=model_ssh_period)
model_residual.attrs['tz_name'] = ssh_forecast.attrs['tz_name']
max_model_residual = model_residual.max()
try:
obs_residual = obs - ttide_ds.pred_all.sel(time=obs_period) - msl
obs_residual.attrs['tz_name'] = obs.attrs['tz_name']
except KeyError:
# No observations available
obs_residual = None
# Wind at NEmo model time of max sea surface height
wind_4h_avg = wind_tools.calc_wind_avg_at_point(
arrow.get(str(max_ssh.time.values)),
weather_path,
PLACES[place]['wind grid ji'],
avg_hrs=-4
)
wind_4h_avg = wind_tools.wind_speed_dir(*wind_4h_avg)
# Model sea surface height field for contour map
tracers_ds = xarray.open_dataset(grid_T_hr_path)
max_ssh_time_utc = arrow.get(
str(max_ssh.time.values)).replace(tzinfo=ssh_forecast.attrs['tz_name']).to('utc')
return SimpleNamespace(
ssh_forecast=ssh_forecast,
obs=obs,
ttide=ttide_ds,
ssh_corrected=ssh_corrected,
msl=msl,
thresholds=thresholds,
max_ssh=max_ssh,
model_residual=model_residual,
max_model_residual = max_model_residual,
obs_residual=obs_residual,
wind_4h_avg=wind_4h_avg,
bathy=bathy,
max_ssh_field=tracers_ds.sossheig.sel(time_counter=max_ssh_time_utc.naive, method='nearest')
)
_prep_fig_axes() Function
¶def _prep_fig_axes(figsize, theme):
fig = plt.figure(
figsize=figsize, facecolor=theme.COLOURS['figure']['facecolor']
)
gs = gridspec.GridSpec(3, 2, width_ratios=[2, 1])
gs.update(wspace=0.13, hspace=0.2)
ax_info = fig.add_subplot(gs[0, 0])
ax_ssh = {'chart_datum': fig.add_subplot(gs[1, 0])}
ax_ssh['msl'] = ax_ssh['chart_datum'].twinx()
for axis in ax_ssh.values():
axis.set_axis_bgcolor(theme.COLOURS['axes']['background'])
ax_res = fig.add_subplot(gs[2, 0])
ax_res.set_axis_bgcolor(theme.COLOURS['axes']['background'])
ax_map = fig.add_subplot(gs[:, 1])
fig.autofmt_xdate()
return fig, (ax_info, ax_ssh, ax_map, ax_res)
_plot_info_box()
Function¶def _plot_info_box(ax_info, place, plot_data, theme):
ax_info.text(
0.05,
0.9,
place,
horizontalalignment='left',
verticalalignment='top',
transform=ax_info.transAxes,
fontproperties=theme.FONTS['info box title'],
color=theme.COLOURS['text']['info box title']
)
heading = wind_tools.bearing_heading(
wind_tools.wind_to_from(plot_data.wind_4h_avg.dir)
)
texts = (
SimpleNamespace(
x=0.05, y=0.75,
words=(
f'Max SSH: {numpy.asscalar(plot_data.max_ssh)+plot_data.msl:.2f} '
f'metres above chart datum')
),
SimpleNamespace(
x=0.05, y=0.6,
words=(
f'Time of max: {arrow.get(str(plot_data.max_ssh.time.values)).format("YYYY-MM-DD HH:mm")} '
f'{plot_data.ssh_forecast.attrs["tz_name"]}'
)
),
SimpleNamespace(
x=0.05, y=0.45,
words=f'Residual: {numpy.asscalar(plot_data.max_model_residual.ssh):.2f} metres'
),
SimpleNamespace(
x=0.05, y=0.3,
words=(
f'Wind: '
f'{plot_data.wind_4h_avg.speed:.0f} m/s from the {heading} \n'
f'(averaged over four hours prior to maximum water level)'
)
)
)
for text in texts:
ax_info.text(
text.x,
text.y,
text.words,
horizontalalignment='left',
verticalalignment='top',
transform=ax_info.transAxes,
fontproperties=theme.FONTS['info box content'],
color=theme.COLOURS['text']['info box content']
)
_info_box_hide_frame(ax_info, theme)
__info_box_hide_frame()
Function¶def _info_box_hide_frame(ax_info, theme):
ax_info.set_axis_bgcolor(theme.COLOURS['figure']['facecolor'])
ax_info.xaxis.set_visible(False)
ax_info.yaxis.set_visible(False)
for spine in ax_info.spines:
ax_info.spines[spine].set_visible(False)
_plot_ssh_time_series()
Function¶def _plot_ssh_time_series(ax_ssh, place, plot_data, theme, ylims=(-1, 6)):
try:
plot_data.obs.water_level.plot(
ax=ax_ssh['chart_datum'],
linewidth=2,
label='Observed',
color=theme.COLOURS['time series']['tide gauge obs']
)
except AttributeError:
# No observations available
pass
(plot_data.ttide.pred_all + plot_data.msl).plot(
ax=ax_ssh['chart_datum'],
linewidth=2,
label='Tide Prediction',
color=theme.COLOURS['time series']['tidal prediction vs model']
)
(plot_data.ssh_forecast.ssh + plot_data.msl).plot(
ax=ax_ssh['chart_datum'],
linewidth=1,
linestyle='--',
label='Model',
color=theme.COLOURS['time series']['tide gauge ssh']
)
(plot_data.ssh_corrected.ssh + plot_data.msl).plot(
ax=ax_ssh['chart_datum'],
linewidth=2,
linestyle='-',
label='Corrected Model',
color=theme.COLOURS['time series']['tide gauge ssh']
)
ax_ssh['chart_datum'].plot(
plot_data.max_ssh.time,
plot_data.max_ssh + plot_data.msl,
marker='o',
markersize=10,
markeredgewidth=3,
label='Maximum SSH',
color=theme.COLOURS['marker']['max ssh']
)
colors = ['Gold', 'Red', 'DarkRed']
labels = ['Maximum tides', 'Extreme water', 'Historical maximum']
for wlev, color, label in zip(plot_data.thresholds, colors, labels):
ax_ssh['chart_datum'].axhline(
y=wlev, color=color, lw=2, ls='solid', label=label
)
legend = ax_ssh['chart_datum'].legend(
numpoints=1,
bbox_to_anchor=(0.75, 1.2),
loc='lower left',
borderaxespad=0,
prop=theme.FONTS['legend label small']
)
legend.set_title('Legend', prop=theme.FONTS['legend title small'])
_ssh_time_series_labels(ax_ssh, place, plot_data, ylims, theme)
_ssh_time_series_labels()
Function¶def _ssh_time_series_labels(ax_ssh, place, plot_data, ylims, theme):
ax_ssh['chart_datum'].set_title(
f'Sea Surface Height at {place}',
fontproperties=theme.FONTS['axes title'],
color=theme.COLOURS['text']['axes title']
)
ax_ssh['chart_datum'].grid(axis='both')
ax_ssh['chart_datum'].set_xlim(
plot_data.ssh_forecast.time.values[0], plot_data.ssh_forecast.time.values[-1]
)
ax_ssh['msl'].set_ylim((ylims[0] - plot_data.msl, ylims[1] - plot_data.msl))
ylabels = (
'Water Level above \n Chart Datum [m]', 'Water Level wrt MSL [m]'
)
for axis, ylabel in zip(ax_ssh.values(), ylabels):
axis.set_ylabel(
ylabel,
fontproperties=theme.FONTS['axis'],
color=theme.COLOURS['text']['axis']
)
theme.set_axis_colors(axis)
_plot_residual_time_series()
Function¶def _plot_residual_time_series(ax_res, plot_data, theme):
plot_data.model_residual.ssh.plot(
ax=ax_res,
linewidth=2,
label='Model Residual',
color=theme.COLOURS['time series']['ssh residual']
)
try:
plot_data.obs_residual.water_level.plot(
ax=ax_res,
linewidth=2,
label='Observed Residual',
color=theme.COLOURS['time series']['obs residual']
)
except AttributeError:
# No observations available
pass
ax_res.legend()
_residual_time_series_labels(ax_res, plot_data, theme)
_residual_time_series_labels()
Function¶def _residual_time_series_labels(ax_res, plot_data, theme, ylims=(-1, 1), yticks=numpy.arange(-1, 1.25, 0.25)):
ax_res.set_title('')
ax_res.set_xlabel(
f'Time [{plot_data.model_residual.attrs["tz_name"]}]',
fontproperties=theme.FONTS['axis'],
color=theme.COLOURS['text']['axis']
)
ax_res.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%d%b %H:%M'))
ax_res.set_ylabel(
'Residual [m]',
fontproperties=theme.FONTS['axis'],
color=theme.COLOURS['text']['axis']
)
ax_res.set_ylim(ylims)
ax_res.set_yticks(yticks)
ax_res.grid(axis='both')
theme.set_axis_colors(ax_res)
_plot_ssh_map()
Function¶def _plot_ssh_map(ax_map, plot_data, place, theme):
contour_intervals = [
-1, -0.5, 0.5, 1, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.4, 2.6
]
mesh = ax_map.contourf(
plot_data.max_ssh_field,
contour_intervals,
cmap='YlOrRd',
extend='both',
alpha=0.6
)
ax_map.contour(
plot_data.max_ssh_field,
contour_intervals,
colors='black',
linestyles='--'
)
cbar = plt.colorbar(mesh, ax=ax_map)
j, i = PLACES[place]['NEMO grid ji']
ax_map.plot(
i,
j,
marker='o',
markersize=10,
markeredgewidth=3,
color=theme.COLOURS['marker']['place']
)
viz_tools.plot_coastline(ax_map, plot_data.bathy)
viz_tools.plot_land_mask(ax_map, plot_data.bathy, color=theme.COLOURS['land'])
_ssh_map_axis_labels(ax_map, place, plot_data, theme)
_ssh_map_cbar_labels(cbar, contour_intervals, theme)
_ssh_map_axis_labels()
Function¶def _ssh_map_axis_labels(ax_map, place, plot_data, theme):
tz_name = plot_data.ssh_forecast.attrs["tz_name"]
ax_map.set_title(
f'Sea Surface Height at '
f'{arrow.get(str(plot_data.max_ssh_field.time_counter.values)).to(tz_name).format("YYYY-MM-DD HH:mm")} '
f'{tz_name}',
fontproperties=theme.FONTS['axes title'],
color=theme.COLOURS['text']['axes title']
)
ax_map.yaxis.set_major_formatter(NullFormatter())
ax_map.grid(axis='both')
theme.set_axis_colors(ax_map)
_ssh_map_cbar_labels()
Function¶def _ssh_map_cbar_labels(cbar, contour_intervals, theme):
cbar.set_ticks(contour_intervals)
cbar.ax.axes.tick_params(labelcolor=theme.COLOURS['cbar']['tick labels'])
cbar.set_label(
'Water Level wrt MSL [m]',
fontproperties=theme.FONTS['axis'],
color=theme.COLOURS['text']['axis']
)
make_figure()
Function¶This is is the function that will be called by the nowcast.workers.make_plots
worker to return a matplotlib.figure.Figure
object.
def make_figure(
place, ssh_fcst_dataset_url_tmpl, tidal_predictions, forecast_hrs,
weather_path, bathy, grid_T_hr_path,
figsize=(20, 12), theme=nowcast.figures.website_theme
):
plot_data = _prep_plot_data(
place, ssh_fcst_dataset_url_tmpl, tidal_predictions, forecast_hrs,
weather_path, bathy, grid_T_hr_path
)
fig, (ax_info, ax_ssh, ax_map, ax_res) = _prep_fig_axes(figsize, theme)
_plot_info_box(ax_info, place, plot_data, theme)
_plot_ssh_time_series(ax_ssh, place, plot_data, theme)
_plot_residual_time_series(ax_res, plot_data, theme)
_plot_ssh_map(ax_map, plot_data, place, theme)
return fig
The %%timeit
cell magic lets us keep an eye on how log the figure takes to process.
Setting -n1 -r1
prevents it from processing the figure more than once
as it might try to do to generate better statistics.
%%timeit -n1 -r1
from importlib import reload
from nowcast.figures import website_theme
from salishsea_tools import places
reload(website_theme)
reload(places)
run_type = 'forecast'
ssh_fcst_dataset_url_tmpl = 'https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSf{place}SSH10mV17-02'
tidal_predictions = '/results/nowcast-sys/SalishSeaNowcast/tidal_predictions/'
forecast_hrs = int(1.5 * 24) if run_type == 'forecast' else int(1.25 * 24)
weather_path = Path('/results/forcing/atmospheric/GEM2.5/operational/fcst/')
bathy = netCDF4.Dataset(Path('/results/nowcast-sys/grid/bathymetry_201702.nc'))
grid_T_hr_path = Path(f'/results/SalishSea/{run_type}/31jul18/SalishSea_1h_20180801_20180802_grid_T.nc')
fig = make_figure(
'Sandy Cove', ssh_fcst_dataset_url_tmpl, tidal_predictions, forecast_hrs,
weather_path, bathy, grid_T_hr_path,
)
/media/doug/warehouse/conda_envs/nowcast-fig-dev/lib/python3.6/site-packages/xarray/plot/utils.py:51: FutureWarning: 'pandas.tseries.converter.register' has been moved and renamed to 'pandas.plotting.register_matplotlib_converters'. converter.register() /media/doug/warehouse/conda_envs/nowcast-fig-dev/lib/python3.6/site-packages/numpy/ma/core.py:6385: MaskedArrayFutureWarning: In the future the default for ma.minimum.reduce will be axis=0, not the current None, to match np.minimum.reduce. Explicitly pass 0 or None to silence this warning. return self.reduce(a) /media/doug/warehouse/conda_envs/nowcast-fig-dev/lib/python3.6/site-packages/numpy/ma/core.py:6385: MaskedArrayFutureWarning: In the future the default for ma.maximum.reduce will be axis=0, not the current None, to match np.maximum.reduce. Explicitly pass 0 or None to silence this warning. return self.reduce(a)
1min 32s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)