import numpy as np
import netCDF4 as nc
import matplotlib.pyplot as plt
from salishsea_tools import bio_tools as bt, places
import xarray as xr
import os
import glob
%matplotlib inline
nml=bt.load_nml_bio(resDir='/ocean/eolson/MEOPAR/NEMO-3.6-code/NEMOGCM/CONFIG/SalishSeaCast/EXP00/',
nmlname='nampisprod',bioRefName='namelist_smelt_cfg_HC201905equiv',bioCfgName='namelist_smelt_cfg_HC201905equiv')
nml
Namelist([('zz_rate_r_diat', 6.0495e-05), ('zz_rate_r_myri', 2.22e-05), ('zz_rate_r_nano', 2.109e-05), ('zz_rate_maxtemp_diat', 26.0), ('zz_rate_maxtemp_myri', 31.0), ('zz_rate_maxtemp_nano', 31.0), ('zz_rate_temprange_diat', 14.0), ('zz_rate_temprange_myri', 13.0), ('zz_rate_temprange_nano', 13.0), ('zz_rate_iopt_diat', 45.0), ('zz_rate_iopt_myri', 37.0), ('zz_rate_iopt_nano', 10.0), ('zz_rate_gamma_diat', 0.0), ('zz_rate_gamma_myri', 0.0), ('zz_rate_gamma_nano', 0.0), ('zz_rate_k_si_diat', 2.2), ('zz_rate_k_si_myri', 0.0), ('zz_rate_k_si_nano', 0.0), ('zz_rate_kapa_diat', 1.0), ('zz_rate_kapa_myri', 0.5), ('zz_rate_kapa_nano', 0.3), ('zz_rate_k_diat', 2.0), ('zz_rate_k_myri', 0.5), ('zz_rate_k_nano', 0.2), ('zz_rate_si_ratio_diat', 1.8), ('zz_rate_si_ratio_myri', 0.0), ('zz_rate_si_ratio_nano', 0.0)])
def phyto_Tdep_Factor(TT, zz_rate_maxtemp, zz_rate_temprange):
if hasattr(TT,'__len__'): # assume 1-d array or similar and return array
return np.array([phyto_Tdep_Factor(el,zz_rate_maxtemp, zz_rate_temprange) for el in TT])
else:
return np.exp(0.07 * (TT - 20)) * min(max((zz_rate_maxtemp - TT), 0.0),zz_rate_temprange) / (zz_rate_temprange + 1e-10)
def calc_T_Factors(TT,nampisprod):
Tdep_Diat=phyto_Tdep_Factor(TT,nampisprod['zz_rate_maxtemp_diat'],nampisprod['zz_rate_temprange_diat'])
Tdep_Myri=phyto_Tdep_Factor(TT,nampisprod['zz_rate_maxtemp_myri'],nampisprod['zz_rate_temprange_myri'])
Tdep_Nano=phyto_Tdep_Factor(TT,nampisprod['zz_rate_maxtemp_nano'],nampisprod['zz_rate_temprange_nano'])
return Tdep_Diat, Tdep_Myri, Tdep_Nano
### Import Temperature Files
## Original WY
monthly_array_temp_orig_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['votemper']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
### 2008 using higher temperature threshold
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}'
with xr.open_dataset(prefix + '_grid_T.nc') as ds:
q = ds.votemper.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_temp_orig_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['votemper']:
data[var].append(ds.votemper.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_temp_orig_slice[monthly_array_temp_orig_slice == 0 ] = np.nan
monthly_array_temp_orig_slicemean = \
np.nanmean(np.nanmean(monthly_array_temp_orig_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_temp_orig_slicemean))
(14, 12)
/tmp/ipykernel_3795255/1734163470.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_temp_orig_slice, axis = 2),axis = 2)
## Experiment 9
monthly_array_temp_exp_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['votemper']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 7):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_river08/SalishSea_1m_{datestr}_{datestr}'
with xr.open_dataset(prefix + '_grid_T.nc') as ds:
q = ds.votemper.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_temp_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['votemper']:
data[var].append(ds.votemper.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(7, 10):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_river08/SalishSea_1m_{datestr}_{datestr}'
with xr.open_dataset(prefix + '_grid_T.nc') as ds:
q = ds.votemper.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_temp_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['votemper']:
data[var].append(ds.votemper.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(10, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/11oct19_river08/SalishSea_1m_{datestr}_{datestr}'
with xr.open_dataset(prefix + '_grid_T.nc') as ds:
q = ds.votemper.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_temp_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['votemper']:
data[var].append(ds.votemper.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_temp_exp_slice[monthly_array_temp_exp_slice == 0 ] = np.nan
monthly_array_temp_exp_slicemean = \
np.nanmean(np.nanmean(monthly_array_temp_exp_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_temp_exp_slicemean))
(14, 12)
/tmp/ipykernel_3795255/2338418733.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_temp_exp_slice, axis = 2),axis = 2)
monthly_array_temp_exp_slicemean[12,:]
array([ 6.68492084, 5.18552462, 7.25557932, 10.16054886, 14.0224531 , 17.57203394, 20.68068024, 20.043708 , 16.67098008, 11.61331057, 8.74718019, 6.62090044])
monthly_array_temp_orig_slicemean[12,:]
array([ 6.66574269, 5.18524643, 7.24007046, 10.16174981, 14.03568474, 17.7114818 , 20.61275981, 20.03991294, 16.73050814, 11.58581398, 8.60023705, 6.47922814])
TdepDiatOrig,__,TdepNanoOrig=calc_T_Factors(monthly_array_temp_orig_slicemean[12,:],nml)
TdepDiatExp,__,TdepNanoExp=calc_T_Factors(monthly_array_temp_exp_slicemean[12,:],nml)
## Original WY
monthly_array_nitrate_orig_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['nitrate']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.nitrate.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_nitrate_orig_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['nitrate']:
data[var].append(ds.nitrate.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_nitrate_orig_slice[monthly_array_nitrate_orig_slice == 0 ] = np.nan
monthly_array_nitrate_orig_slicemean = \
np.nanmean(np.nanmean(monthly_array_nitrate_orig_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_nitrate_orig_slicemean))
(14, 12)
/tmp/ipykernel_3795255/3312634990.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_nitrate_orig_slice, axis = 2),axis = 2)
## Experiment 9
monthly_array_nitrate_exp_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['nitrate']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 7):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.nitrate.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_nitrate_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['nitrate']:
data[var].append(ds.nitrate.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(7, 10):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.nitrate.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_nitrate_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['nitrate']:
data[var].append(ds.nitrate.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(10, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/11oct19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.nitrate.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_nitrate_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['nitrate']:
data[var].append(ds.nitrate.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_nitrate_exp_slice[monthly_array_nitrate_exp_slice == 0 ] = np.nan
monthly_array_nitrate_exp_slicemean = \
np.nanmean(np.nanmean(monthly_array_nitrate_exp_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_nitrate_exp_slicemean))
(14, 12)
/tmp/ipykernel_3795255/1010059431.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_nitrate_exp_slice, axis = 2),axis = 2)
## Original WY
monthly_array_silicon_orig_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['silicon']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.silicon.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_silicon_orig_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['silicon']:
data[var].append(ds.silicon.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_silicon_orig_slice[monthly_array_silicon_orig_slice == 0 ] = np.nan
monthly_array_silicon_orig_slicemean = \
np.nanmean(np.nanmean(monthly_array_silicon_orig_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_silicon_orig_slicemean))
(14, 12)
/tmp/ipykernel_3795255/241793216.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_silicon_orig_slice, axis = 2),axis = 2)
## Experiment 9
monthly_array_silicon_exp_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['silicon']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 7):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.silicon.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_silicon_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['silicon']:
data[var].append(ds.silicon.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(7, 10):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.silicon.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_silicon_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['silicon']:
data[var].append(ds.silicon.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(10, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/11oct19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.silicon.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_silicon_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['silicon']:
data[var].append(ds.silicon.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_silicon_exp_slice[monthly_array_silicon_exp_slice == 0 ] = np.nan
monthly_array_silicon_exp_slicemean = \
np.nanmean(np.nanmean(monthly_array_silicon_exp_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_silicon_exp_slicemean))
(14, 12)
/tmp/ipykernel_3795255/4227105976.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_silicon_exp_slice, axis = 2),axis = 2)
## Original WY
monthly_array_ammonium_orig_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['ammonium']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.ammonium.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_ammonium_orig_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['ammonium']:
data[var].append(ds.ammonium.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_ammonium_orig_slice[monthly_array_ammonium_orig_slice == 0 ] = np.nan
monthly_array_ammonium_orig_slicemean = \
np.nanmean(np.nanmean(monthly_array_ammonium_orig_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_ammonium_orig_slicemean))
(14, 12)
/tmp/ipykernel_3795255/3976818894.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_ammonium_orig_slice, axis = 2),axis = 2)
## Experiment 9
monthly_array_ammonium_exp_slice = np.zeros([14,12,50,50])
# Load monthly averages
mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')
slc = {'y': slice(450,500), 'x': slice(250,300)}
e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]
years, variables = range(2007, 2021), ['ammonium']
# Temporary list dict
data = {}
# Permanent aggregate dict
aggregates = {var: {} for var in variables}
monthlydat = {var: {} for var in variables}
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(1, 7):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.ammonium.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_ammonium_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['ammonium']:
data[var].append(ds.ammonium.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
# Add experiment year
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(7, 10):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.ammonium.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_ammonium_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['ammonium']:
data[var].append(ds.ammonium.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
for year in [2019]:
# Initialize lists
for var in variables: data[var] = []
# Load monthly averages
for month in range(10, 13):
datestr = f'{year}{month:02d}'
prefix = f'/data/sallen/results/MEOPAR/Karyn/11oct19_river08/SalishSea_1m_{datestr}_{datestr}'
# Load grazing variables
with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:
q = ds.ammonium.isel(deptht=0, **slc).values
q2 = q[0,:,:]
monthly_array_ammonium_exp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension
for var in ['ammonium']:
data[var].append(ds.ammonium.isel(deptht=0, **slc).values)
# Concatenate months
for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)
monthly_array_ammonium_exp_slice[monthly_array_ammonium_exp_slice == 0 ] = np.nan
monthly_array_ammonium_exp_slicemean = \
np.nanmean(np.nanmean(monthly_array_ammonium_exp_slice, axis = 2),axis = 2)
print(np.shape(monthly_array_ammonium_exp_slicemean))
(14, 12)
/tmp/ipykernel_3795255/3603250393.py:3: RuntimeWarning: Mean of empty slice np.nanmean(np.nanmean(monthly_array_ammonium_exp_slice, axis = 2),axis = 2)
# for now just set light to constant and ignore 'limiter' and 'limval'
DiatLimOrig, __, NanoLimOrig = bt.calc_p_limiters(10*np.ones(np.shape(monthly_array_nitrate_orig_slicemean[12,:])),
NO=monthly_array_nitrate_orig_slicemean[12,:],
NH=monthly_array_ammonium_orig_slicemean[12,:],
Si=monthly_array_silicon_orig_slicemean[12,:],
tmask=np.ones(np.shape(monthly_array_nitrate_orig_slicemean[12,:])),
nampisprod=nml)
# for now just set light to constant and ignore 'limiter' and 'limval'
DiatLimExp, __, NanoLimExp = bt.calc_p_limiters(10*np.ones(np.shape(monthly_array_nitrate_exp_slicemean[12,:])),
NO=monthly_array_nitrate_exp_slicemean[12,:],
NH=monthly_array_ammonium_exp_slicemean[12,:],
Si=monthly_array_silicon_exp_slicemean[12,:],
tmask=np.ones(np.shape(monthly_array_nitrate_exp_slicemean[12,:])),
nampisprod=nml)
DiatLimOrig
{'ILim': array([0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692]), 'NLim': array([0.92177655, 0.91938623, 0.88324047, 0.71279276, 0.65085919, 0.39827465, 0.38265472, 0.40354223, 0.77676333, 0.89482032, 0.9016511 , 0.9135385 ]), 'SiLim': array([0.95638142, 0.95736831, 0.94794749, 0.87408713, 0.83030771, 0.91917568, 0.93623009, 0.93732263, 0.94506319, 0.95022164, 0.95311615, 0.95570312]), 'limiter': array([0., 0., 0., 0., 0., 2., 2., 2., 0., 0., 0., 0.]), 'limval': array([0.51559692, 0.51559692, 0.51559692, 0.51559692, 0.51559692, 2.39827465, 2.38265472, 2.40354223, 0.51559692, 0.51559692, 0.51559692, 0.51559692])}
NutLimDiatOrig=np.where(DiatLimOrig['SiLim']<DiatLimOrig['NLim'],DiatLimOrig['SiLim'],DiatLimOrig['NLim'])
NutLimNanoOrig=NanoLimOrig['NLim']
NutLimDiatExp=np.where(DiatLimExp['SiLim']<DiatLimExp['NLim'],DiatLimExp['SiLim'],DiatLimExp['NLim'])
NutLimNanoExp=NanoLimExp['NLim']
mumaxDiat=nml['zz_rate_r_diat']
mumaxNano=nml['zz_rate_r_nano']
mumaxDiat/mumaxNano*NutLimDiatExp/NutLimNanoExp #'WY with CY Rivers Nutrient dependence only'
array([2.71312929, 2.70705032, 2.63109434, 2.25416726, 2.06368532, 1.61223576, 1.44798715, 1.44531944, 2.39809586, 2.65546763, 2.67459232, 2.69711616])
mumaxDiat/mumaxNano*TdepDiatExp/TdepNanoExp #'WY with CY Rivers Temperature dependence only'
array([2.86842105, 2.86842105, 2.86842105, 2.86842105, 2.45404626, 1.72678252, 1.37297695, 1.4480068 , 1.91139694, 2.86842105, 2.86842105, 2.86842105])
mumaxDiat/mumaxNano*TdepDiatExp/TdepNanoExp*NutLimDiatExp/NutLimNanoExp #'WY with CY Rivers both')
array([2.71312929, 2.70705032, 2.63109434, 2.25416726, 1.76556341, 0.97056202, 0.69308269, 0.72961129, 1.59799172, 2.65546763, 2.67459232, 2.69711616])