import cmocean.cm as cm
import datetime as dt
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import numpy as np
import pandas as pd
# import statfieldodels.api as sm
import xarray as xr
from salishsea_tools import viz_tools
Bot data from 2011 - 2019
PSF data from 2015 - 2017??
field = 'Dissolved Oxygen'
obsn = 'Oxygen_Dissolved'
modn = 'mod_dissolved_oxygen'
vmax = 420
vmin = 30
dbin = 10
scale = 260
cmap = 'pink_r'#cm.rain #cm.ice_r #'ocean_r' #'pink_r'
foramt = "{:.3}"
myformat = {'bias': foramt, 'rmse': foramt, 'crmse':foramt, 'swillmott': foramt, 'slopedev': foramt, 'const': foramt,
'systematic': foramt, 'nonsystematic':foramt,
'spread': foramt}
def use_f_2(x):
return "%.2f" % x
with xr.open_dataset('/home/sallen/MEOPAR/grid/mesh_mask201702.nc') as mesh:
deptht = mesh.gdept_1d[0].values
bathy = xr.open_dataset('/home/sallen/MEOPAR/grid/bathymetry_202108.nc')
def bias(df, obs, mod):
diffy = df[mod] - df[obs]
return diffy.count(), diffy.mean()
def rmse(df, obs, mod):
return (np.sqrt(((df[mod] - df[obs])**2).mean()))
def crmse(rmse, bias):
return (np.sqrt(rmse**2 - bias**2))
def swillmott(df, obs, mod):
meanobs = df[obs].mean()
return (((df[mod] - df[obs])**2).sum()
/(( (df[mod] - meanobs).abs() + (df[obs] - meanobs).abs() )**2).sum())
def slope_inter(df, obs, mod):
X = df[obs]
y = df[mod]
X = sm.add_constant(X)
# Fit and make the predictions by the model
model = sm.OLS(y, X, missing='drop').fit()
predictions = model.predict(X)
nonsyst = np.sqrt(((y - predictions)**2).mean())
systematic = np.sqrt(((predictions - df[obs])**2).mean())
return model.params[obs], model.params['const'], systematic, nonsyst
def wolfram_perp(df, obsin, modin):
mod = np.array(df[modin][(df[modin] == df[modin]) & (df[obsin] == df[obsin])])
obs = np.array(df[obsin][(df[modin] == df[modin]) & (df[obsin] == df[obsin])])
n = mod.shape[0]
y2s = (mod**2).sum()
ys = mod.sum()
x2s = (obs**2).sum()
xs = obs.sum()
xys = (mod * obs).sum()
B = 0.5 * ( (y2s - ys**2/n) - (x2s - xs**2/n)) / (xs * ys/n - xys)
b1 = -B + np.sqrt(B*B + 1)
a1 = (ys - b1*xs)/n
predictions = a1 + b1 * df[obsin]
nonsyst = np.sqrt(((df[modin] - predictions)**2).mean())
systematic = np.sqrt(((predictions - df[obsin])**2).mean())
return a1, b1, systematic, nonsyst
def spread(df, obs, mod):
return 1 - ((df[mod] - df[mod].mean())**2).mean() / ((df[obs] - df[obs].mean())**2).mean()
def read_pieces(pieces):
temp1 = pd.read_csv(pieces[0])
for piece in pieces[1:]:
nextpiece = pd.read_csv(piece)
if 'ferry' in piece:
nextpiece['k'] = 0
temp1 = pd.concat([temp1, nextpiece], ignore_index=True)
return temp1
def plot_and_stats(temp1, name, idepth, jdepth, fig, ax, whichdepths, reverse, string, boxes=False, box=None, boxname=None):
if boxes:
corn = box
select = temp1[(temp1.k >= idepth) & (temp1.k <= jdepth) &
(temp1.j >= corn[0]) & (temp1.j <= corn[1]) &
(temp1.i >= corn[2]) & (temp1.i <= corn[3]) &
(temp1[obsn] == temp1[obsn])]
shift_text = 0.94
else:
select = temp1[(temp1.k >= idepth) & (temp1.k < jdepth) & (temp1[obsn] == temp1[obsn])]
shift_text = 1
if reverse:
one = modn
two = obsn
else:
one = obsn
two = modn
counts, xedges, yedges, color = ax.hist2d(select[one],
select[two],
bins=np.arange(vmin, vmax, dbin), norm=LogNorm(), cmap=cmap);
fig.colorbar(color, ax=ax)
number, tbias = bias(select, one, two)
trmse = rmse(select, one, two)
tcrmse = crmse(trmse, tbias)
tswillmott = swillmott(select, one, two)
# m, c, syst, nonsyst = slope_inter(select, one, two)
a1, b1, syst, nonsyst = wolfram_perp(select, one, two)
tspread = spread(select, one, two)
ax.plot([vmin, vmax], [vmin, vmax], 'k-');
xr = np.arange(vmin, vmax, 0.5)
# ax.plot(xr, c + m * xr, 'r-');
ax.plot(xr, a1 + b1 * xr, 'r-')
sc = scale/12
sh = 2*sc-1
bot = scale
top = bot + 2*sh
ax.arrow(sc+vmin, bot+vmin, 0, sh-np.abs(tbias)/2, head_width=0.5*sc, head_length=0.2*sc, length_includes_head=True)
ax.arrow(sc+vmin, top+vmin, 0, -sh+np.abs(tbias)/2, head_width=0.5*sc, head_length=0.2*sc, length_includes_head=True)
ax.arrow(2*sc+vmin, bot+vmin, 0, sh-syst/2, head_width=0.5*sc, head_length=0.2*sc, length_includes_head=True)
ax.arrow(2*sc+vmin, top+vmin, 0, -sh+syst/2, head_width=0.5*sc, head_length=0.2*sc, length_includes_head=True)
ax.arrow(3*sc+vmin, bot+vmin, 0, sh-nonsyst/2, head_width=0.5*sc, head_length=0.2*sc, length_includes_head=True)
ax.arrow(3*sc+vmin, top+vmin, 0, -sh+nonsyst/2, head_width=0.5*sc, head_length=0.2*sc, length_includes_head=True);
Cp2 = {'number': number,
'bias': tbias,
'rmse': trmse,
'crmse': tcrmse,
'swillmott': tswillmott,
'slopedev': 1-b1,
'const': a1,
'systematic': syst,
'nonsystematic': nonsyst,
'spread': tspread}
ax.text(0.8*sc+vmin, 0.9*bot*shift_text+vmin, 'bias', rotation=90)
ax.text(1.8*sc+vmin, 0.72*bot*shift_text+vmin-shift_text, 'systematic', rotation=90)
ax.text(2.8*sc+vmin, 0.6*bot*shift_text+vmin-shift_text, 'non-systematic', rotation=90)
ax.set_title(f'{name}, {field} {whichdepths}{string}');
dCp2 = pd.DataFrame(data=Cp2, index=[name])
ax.set_ylabel('Model (µmol/L)')
ax.set_xlabel('Obs (µmol/L)')
return dCp2, counts
def highlight_max_min(s):
'''
highlight the maximum in a Series yellow.
'''
is_max = abs(s) == abs(s).max()
is_min = abs(s) == abs(s).min()
color = []
for v, v2 in zip(is_max, is_min):
if v:
color.append('red')
elif v2:
color.append('darkgreen')
else:
color.append('black')
return ['color: %s' % color[i] for i in range(len(is_max))]
def plot_allyears(years, years_psf, years_pug, years_ctdfo, years_onc, years_ferry, idepth, jdepth, whichdepths, reverse=False):
if reverse:
string = '_reverse'
else:
string = ''
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
startyear = years[0] #min(years[0], years_psf[0], years_pug[0])#, years_onc[0])
endyear = years [-1] #max(years[-1], years_psf[-1], years_pug[-1])#, years_onc[-1])
fig.suptitle(f'Year {startyear}-{endyear}')
pieces1 = []
for year in years:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_bot_{year}0101_{year}1231.csv')
for year in years_psf:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_psf_{year}0101_{year}1231.csv')
for year in years_pug:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_pugts_{year}0101_{year}1231.csv')
for year in years_ctdfo:
pieces1.append(
f'/ocean/atall/MOAD/ObsModel/202111/ObsModel_201905R_ctd_from_dfo_{year}0101_{year}1231.csv')
for year in years_onc:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_onc_{year}0101_{year}1231.csv')
for year in years_ferry:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_ferry_{year}0101_{year}1231.csv')
temp1 = read_pieces(pieces1)
d201905, counts1 = plot_and_stats(temp1, '201905R', idepth, jdepth, fig, axs[0], whichdepths, reverse, string)
pieces2 = []
for year in years:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_bot_{year}0101_{year}1231.csv')
for year in years_psf:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_psf_{year}0101_{year}1231.csv')
for year in years_pug:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_pugts_{year}0101_{year}1231.csv')
for year in years_ctdfo:
pieces1.append(
f'/ocean/atall/MOAD/ObsModel/202111/ObsModel_202111_ctd_from_dfo_{year}0101_{year}1231.csv')
for year in years_onc:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_onc_{year}0101_{year}1231.csv')
for year in years_ferry:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_ferry_{year}0101_{year}1231.csv')
temp2 = read_pieces(pieces2)
d202111, counts2 = plot_and_stats(temp2, '202111', idepth, jdepth, fig, axs[1], whichdepths, reverse, string)
alltogether = pd.concat([d201905, d202111], axis=0)
fig.savefig(f'{whichdepths}_{field}{string}_201905_202111_for_allyears.png')
f = open(f'./{whichdepths}_{field}{string}_201905_202111_for_allyears_table.tex', 'w')
f.write(alltogether.to_latex(column_format='lcccccccccc',
formatters=["{:d}".format, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2]))
f.close()
return alltogether, counts1, counts2
idepth = 0
jdepth = 39
results, counts1, counts2 = plot_allyears([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
, [2015, 2016, 2017], []
, [2011, 2012, 2013, 2014, 2015, 2016]
, [] # , [2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
, [] # , [2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
, idepth, jdepth, 'alldepths')
results.style.format(myformat).apply(highlight_max_min)
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 547613 | 91.2 | 1.16e+02 | 71.0 | 0.603 | 0.136 | 1.15e+02 | 91.4 | 66.3 | 0.0333 |
202111 | 10405 | -3.24 | 31.6 | 31.5 | 0.0644 | 0.099 | 16.0 | 7.35 | 29.4 | 0.168 |
idepth = 0
jdepth = 5
results, counts1, counts2 = plot_allyears([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
, [2015, 2016, 2017]
, [], [2011, 2012, 2013, 2014, 2015, 2016]
, []
, [],
idepth, jdepth, 'top5m')
results.style.format(myformat).apply(highlight_max_min)
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 538497 | 93.1 | 1.16e+02 | 69.9 | 0.607 | 0.385 | 1.6e+02 | 95.3 | 57.6 | 0.104 |
202111 | 1289 | -7.9 | 44.6 | 43.9 | 0.186 | 0.321 | 80.5 | 21.4 | 34.3 | 0.426 |
idepth = 5
jdepth = 39
results, counts1, counts2 = plot_allyears([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
, [2015, 2016, 2017]
, [], [2011, 2012, 2013, 2014, 2015, 2016]
, []
, [],
idepth, jdepth, 'below5m')
results.style.format(myformat).apply(highlight_max_min)
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 9116 | -21.8 | 41.0 | 34.7 | 0.113 | -0.116 | -43.0 | 22.8 | 36.2 | -0.204 |
202111 | 9116 | -2.58 | 29.4 | 29.2 | 0.0703 | 0.086 | 13.1 | 5.68 | 27.6 | 0.145 |
def stats_only(temp1, name, idepth, jdepth, corn, boxname):
select = temp1[(temp1.k >= idepth) & (temp1.k <= jdepth) &
(temp1.j >= corn[0]) & (temp1.j <= corn[1]) &
(temp1.i >= corn[2]) & (temp1.i <= corn[3])]
number, tbias = bias(select, obsn, modn)
if number > 0:
trmse = rmse(select, obsn, modn)
tcrmse = crmse(trmse, tbias)
tswillmott = swillmott(select, obsn, modn)
a1, b1, syst, nonsyst = wolfram_perp(select, obsn, modn)
tspread = spread(select, obsn, modn)
Cp2 = {'number': number,
'bias': tbias,
'rmse': trmse,
'crmse': tcrmse,
'swillmott': tswillmott,
'slopedev': 1-b1,
'const': a1,
'systematic': syst,
'nonsystematic': nonsyst,
'spread': tspread,
'region': boxname}
dCp2 = pd.DataFrame(data=Cp2, index=[name])
else:
dCp2 = 0
return number, dCp2
def stats_allregions(years, years_psf, years_pug, years_ctdfo, years_onc, years_ferry, idepth, jdepth, whichdepths):
pieces1 = []
for year in years:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_bot_{year}0101_{year}1231.csv'
)
for year in years_psf:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_psf_{year}0101_{year}1231.csv')
for year in years_pug:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_pugts_{year}0101_{year}1231.csv')
for year in years_ctdfo:
pieces1.append(
f'/ocean/atall/MOAD/ObsModel/202111/ObsModel_201905R_ctd_from_dfo_{year}0101_{year}1231.csv')
for year in years_onc:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_onc_{year}0101_{year}1231.csv')
for year in years_ferry:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_ferry_{year}0101_{year}1231.csv')
temp1 = read_pieces(pieces1)
number, alltogether = stats_only(temp1, '201905R', idepth, jdepth, boxes[0], boxnames[0])
for boxname, corn in zip(boxnames[1:], boxes[1:]):
number, d201905 = stats_only(temp1, '201905R', idepth, jdepth, corn, boxname)
if number > 0:
alltogether = pd.concat([alltogether, d201905], axis=0)
pieces2 = []
for year in years:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_bot_{year}0101_{year}1231.csv'
)
for year in years_psf:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_psf_{year}0101_{year}1231.csv')
for year in years_pug:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_pugts_{year}0101_{year}1231.csv')
for year in years_ctdfo:
pieces1.append(
f'/ocean/atall/MOAD/ObsModel/202111/ObsModel_202111_ctd_from_dfo_{year}0101_{year}1231.csv')
for year in years_onc:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_onc_{year}0101_{year}1231.csv')
for year in years_ferry:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_ferry_{year}0101_{year}1231.csv')
temp2 = read_pieces(pieces2)
for boxname, corn in zip(boxnames, boxes):
number, d202111 = stats_only(temp2, '202111', idepth, jdepth, corn, boxname)
if number > 0:
alltogether = pd.concat([alltogether, d202111], axis=0)
f = open(f'./{whichdepths}_{field}_201905_202111_for_allregions_table.tex', 'w')
f.write(alltogether.to_latex(column_format='lccccccccccl',
formatters=["{:d}".format, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, use_f_2, str.upper]))
f.close()
return number, alltogether
def stats_and_plot(years, years_psf, years_pug, years_ctdfo, years_onc, years_ferry, idepth, jdepth, box, boxname, whichdepths):
fig, axs = plt.subplots(1, 4, figsize=(20, 4))
fig.suptitle(f'{boxname} Year {years[0]}-{years[-1]}')
pieces1 = []
for year in years:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_bot_{year}0101_{year}1231.csv'
)
for year in years_psf:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_psf_{year}0101_{year}1231.csv')
for year in years_pug:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_pugts_{year}0101_{year}1231.csv')
for year in years_ctdfo:
pieces1.append(
f'/ocean/atall/MOAD/ObsModel/202111/ObsModel_201905R_ctd_from_dfo_{year}0101_{year}1231.csv')
for year in years_onc:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_onc_{year}0101_{year}1231.csv')
for year in years_ferry:
pieces1.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_201905R_ferry_{year}0101_{year}1231.csv')
temp1 = read_pieces(pieces1)
alltogether, counts = plot_and_stats(temp1, '201905R', idepth, jdepth, fig, axs[0], whichdepths, False, '', boxes=True, box=box, boxname=boxname)
pieces2 = []
for year in years:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_bot_{year}0101_{year}1231.csv'
)
for year in years_psf:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_psf_{year}0101_{year}1231.csv')
for year in years_pug:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_pugts_{year}0101_{year}1231.csv')
for year in years_ctdfo:
pieces1.append(
f'/ocean/atall/MOAD/ObsModel/202111/ObsModel_202111_ctd_from_dfo_{year}0101_{year}1231.csv')
for year in years_onc:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_onc_{year}0101_{year}1231.csv')
for year in years_ferry:
pieces2.append(
f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_ferry_{year}0101_{year}1231.csv')
temp2 = read_pieces(pieces2)
d202111, counts = plot_and_stats(temp2, '202111', idepth, jdepth, fig, axs[1], whichdepths, False, '', boxes=True, box=box, boxname=boxname)
plot_profiles(temp1, temp2, axs[2], axs[3], box, boxname)
alltogether = pd.concat([alltogether, d202111], axis=0)
def plot_profiles(temp1, temp2, ax, ax2, box, boxname):
corn = box
temp1['diff'] = temp1[modn] - temp1[obsn]
select = temp1[(temp1.k >= idepth) & (temp1.k <= jdepth) &
(temp1.j >= corn[0]) & (temp1.j <= corn[1]) &
(temp1.i >= corn[2]) & (temp1.i <= corn[3]) &
(temp1[obsn] == temp1[obsn])]
ks = (select.groupby('k')[obsn].mean().index[:])
ax.plot(select.groupby('k')[obsn].mean(), deptht[ks], 'o-', c='tab:green', label='Observations')
ax.plot(select.groupby('k')[modn].mean(), deptht[ks], 'o-', c='tab:blue', label='201905')
ax2.plot(select.groupby('k')['diff'].mean(), deptht[ks], '-', c='tab:blue', label='201905')
ax.fill_betweenx(deptht[ks], select[['k', modn]].groupby('k').quantile(q=0.25)[modn], select[['k', modn]].groupby('k').quantile(q=0.75)[modn], alpha=0.2, color='tab:blue')
ax2.fill_betweenx(deptht[ks], select[['k', 'diff']].groupby('k').quantile(q=0.25)['diff'], select[['k', 'diff']].groupby('k').quantile(q=0.75)['diff'], alpha=0.2, color='tab:blue')
temp2['diff'] = temp2[modn] - temp2[obsn]
select = temp2[(temp2.k >= idepth) & (temp2.k <= jdepth) &
(temp2.j >= corn[0]) & (temp2.j <= corn[1]) &
(temp2.i >= corn[2]) & (temp2.i <= corn[3]) &
(temp2[obsn] == temp2[obsn])]
ax.plot(select.groupby('k')[modn].mean(), deptht[ks], 'o-', c='tab:orange', label='202111')
ax2.plot(select.groupby('k')['diff'].mean(), deptht[ks], '-', c='tab:orange', label='202111')
ax.fill_betweenx(deptht[ks], select[['k', modn]].groupby('k').quantile(q=0.25)[modn], select[['k', modn]].groupby('k').quantile(q=0.75)[modn], alpha=0.2, color='tab:orange')
ax.fill_betweenx(deptht[ks], select[['k', obsn]].groupby('k').quantile(q=0.25)[obsn], select[['k', obsn]].groupby('k').quantile(q=0.75)[obsn], alpha=0.2, color='tab:orange')
ax2.fill_betweenx(deptht[ks], select[['k', 'diff']].groupby('k').quantile(q=0.25)['diff'], select[['k', 'diff']].groupby('k').quantile(q=0.75)['diff'], alpha=0.2, color='tab:orange')
ax.invert_yaxis()
ax2.invert_yaxis()
ax.legend()
ax2.legend()
ax.set_title(f'{field} Profiles')
ax2.set_title(f'{field} Difference Profiles')
ax2.grid();
ax.set_ylabel('Depth (m)')
ax2.set_ylabel('Depth (m)')
ax.set_xlabel('DO (µmol/L)')
ax2.set_xlabel('DO (µmol/L)')
def plot_box(ax, corn, colour):
ax.plot([corn[2], corn[3], corn[3], corn[2], corn[2]],
[corn[0], corn[0], corn[1], corn[1], corn[0]], '-', color=colour)
fig, ax = plt.subplots(1, 1, figsize=(5, 9))
mycmap = cm.deep
mycmap.set_bad('grey')
ax.pcolormesh(bathy['Bathymetry'], cmap=mycmap)
viz_tools.set_aspect(ax);
#Saanich_Inlet = [330, 390, 180, 220]
#plot_box(ax, Saanich_Inlet, 'm')
#Hood_Canal = [68, 150, 95, 200]
#plot_box(ax, Hood_Canal, 'm')
SoG_center = [450, 550, 200, 300]
plot_box(ax, SoG_center, 'b')
SoG_north = [650, 730, 100, 200]
plot_box(ax, SoG_north, 'g')
SoG_south = [320, 380, 280, 350]
plot_box(ax, SoG_south, 'k')
Haro_Boundary = [290, 350, 210, 280]
plot_box(ax, Haro_Boundary, 'g')
JdF_east = [200, 290, 150, 260]
plot_box(ax, JdF_east, 'b')
JdF_west = [250, 425, 25, 125]
plot_box(ax, JdF_west, 'k')
#PS_main = [20, 150, 200, 280]
PS_main = [0, 150, 100, 280]
plot_box(ax, PS_main, 'k')
SS_all = [0, 898, 0, 398]
boxes = [SS_all, SoG_south,SoG_center, SoG_north, PS_main, Haro_Boundary, JdF_west, JdF_east]
boxnames = ['SS_all','SoG_south', 'SoG_center', 'SoG_north', 'PS_main', 'Haro_Boundary',
'JdF_west', 'JdF_east']
#boxnames = ['SS_all', 'Hood_Canal','Saanich_Inlet','SoG_south', 'SoG_center', 'SoG_north', 'PS_main', 'Haro_Boundary',
# 'JdF_west', 'JdF_east']
Fraser_plume = [380, 460, 260, 330]
plot_box(ax, Fraser_plume, 'm')
idepth = 0
jdepth = 39
number, results = stats_allregions([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019],
[2015, 2016, 2017], [], [2011, 2012, 2013, 2014, 2015, 2016], [],
[],
idepth, jdepth, 'alldepths')
for boxname in boxnames:
if number > 0:
print(f'\033[1m{boxname}\033[1m')
display(results[results.region == boxname].loc[:, results.columns != 'region'].style.format(myformat).apply(highlight_max_min))
SS_all
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 547613 | 91.2 | 1.16e+02 | 71.0 | 0.603 | 0.136 | 1.15e+02 | 91.4 | 66.3 | 0.0989 |
202111 | 10405 | -3.24 | 31.6 | 31.5 | 0.0644 | 0.099 | 16.0 | 7.35 | 29.4 | 0.0625 |
SoG_south
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 25184 | 62.8 | 80.8 | 50.8 | 0.486 | -0.522 | -42.8 | 66.7 | 63.2 | -0.446 |
202111 | 700 | 1.76 | 17.9 | 17.8 | 0.0414 | 0.00419 | 2.61 | 1.77 | 17.8 | -0.146 |
SoG_center
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 91380 | 1.18e+02 | 1.29e+02 | 52.5 | 0.635 | 0.274 | 1.65e+02 | 1.19e+02 | 45.5 | 0.379 |
202111 | 1680 | -0.828 | 27.5 | 27.5 | 0.0502 | 0.1 | 17.9 | 6.6 | 25.5 | 0.00402 |
SoG_north
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 47261 | 97.9 | 1.15e+02 | 60.1 | 0.624 | 0.224 | 1.36e+02 | 98.5 | 53.6 | 0.0888 |
202111 | 954 | 0.0994 | 40.5 | 40.5 | 0.144 | 0.238 | 45.0 | 14.6 | 34.1 | 0.0801 |
PS_main
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 3119 | 64.0 | 89.5 | 62.5 | 0.638 | -5.03 | -9.06e+02 | 1.48e+02 | 1.5e+02 | -4.67 |
Haro_Boundary
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 32612 | 34.5 | 55.4 | 43.3 | 0.357 | -0.289 | -18.9 | 36.4 | 49.1 | -0.294 |
202111 | 691 | 1.99 | 28.5 | 28.4 | 0.0998 | 0.0751 | 16.2 | 4.13 | 27.2 | 0.119 |
JdF_west
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 23121 | 85.3 | 1.09e+02 | 67.9 | 0.533 | 0.601 | 1.82e+02 | 92.5 | 48.6 | 0.346 |
202111 | 912 | -2.5 | 22.0 | 21.9 | 0.0249 | -0.0506 | -10.8 | 4.29 | 22.2 | -0.0887 |
JdF_east
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 20388 | 35.6 | 57.8 | 45.5 | 0.325 | 0.158 | 64.8 | 36.5 | 41.7 | 0.168 |
202111 | 726 | -2.86 | 18.0 | 17.8 | 0.0316 | 0.0565 | 7.68 | 4.13 | 17.1 | 0.128 |
stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017],
[], [2011, 2012, 2013, 2014, 2015, 2016],
[],
[],
idepth, jdepth, SoG_south, 'SoG_south', 'alldepths')
stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017],
[], [2011, 2012, 2013, 2014, 2015, 2016], [],
[],
idepth, jdepth, SoG_center, 'SoG_center', 'alldepths')
stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017],
[], [2011, 2012, 2013, 2014, 2015, 2016], [], [],
idepth, jdepth, SoG_north, 'SoG_north', 'alldepths')
idepth = 0
jdepth = 39
stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017],
[], [2011, 2012, 2013, 2014, 2015, 2016], [], [],
idepth, jdepth, PS_main, 'PS_main', 'alldepths')
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[50], line 3 1 idepth = 0 2 jdepth = 39 ----> 3 stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017], 4 [], [2011, 2012, 2013, 2014, 2015, 2016], [], [], 5 idepth, jdepth, PS_main, 'PS_main', 'alldepths') Cell In[41], line 50, in stats_and_plot(years, years_psf, years_pug, years_ctdfo, years_onc, years_ferry, idepth, jdepth, box, boxname, whichdepths) 47 pieces2.append( 48 f'/data/sallen/results/MEOPAR/202111/ObsModel/ObsModel_202111_ferry_{year}0101_{year}1231.csv') 49 temp2 = read_pieces(pieces2) ---> 50 d202111, counts = plot_and_stats(temp2, '202111', idepth, jdepth, fig, axs[1], whichdepths, False, '', boxes=True, box=box, boxname=boxname) 52 plot_profiles(temp1, temp2, axs[2], axs[3], box, boxname) 55 alltogether = pd.concat([alltogether, d202111], axis=0) Cell In[33], line 23, in plot_and_stats(temp1, name, idepth, jdepth, fig, ax, whichdepths, reverse, string, boxes, box, boxname) 18 two = modn 20 counts, xedges, yedges, color = ax.hist2d(select[one], 21 select[two], 22 bins=np.arange(vmin, vmax, dbin), norm=LogNorm(), cmap=cmap); ---> 23 fig.colorbar(color, ax=ax) 25 number, tbias = bias(select, one, two) 26 trmse = rmse(select, one, two) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/figure.py:1293, in FigureBase.colorbar(self, mappable, cax, ax, use_gridspec, **kwargs) 1289 NON_COLORBAR_KEYS = ['fraction', 'pad', 'shrink', 'aspect', 'anchor', 1290 'panchor'] 1291 cb_kw = {k: v for k, v in kwargs.items() if k not in NON_COLORBAR_KEYS} -> 1293 cb = cbar.Colorbar(cax, mappable, **cb_kw) 1295 if not userax: 1296 self.sca(current_ax) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/_api/deprecation.py:384, in delete_parameter.<locals>.wrapper(*inner_args, **inner_kwargs) 379 @functools.wraps(func) 380 def wrapper(*inner_args, **inner_kwargs): 381 if len(inner_args) <= name_idx and name not in inner_kwargs: 382 # Early return in the simple, non-deprecated case (much faster than 383 # calling bind()). --> 384 return func(*inner_args, **inner_kwargs) 385 arguments = signature.bind(*inner_args, **inner_kwargs).arguments 386 if is_varargs and arguments.get(name): File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colorbar.py:402, in Colorbar.__init__(self, ax, mappable, cmap, norm, alpha, values, boundaries, orientation, ticklocation, extend, spacing, ticks, format, drawedges, filled, extendfrac, extendrect, label, location) 399 self.ticklocation = ticklocation 401 self.set_label(label) --> 402 self._reset_locator_formatter_scale() 404 if np.iterable(ticks): 405 self._locator = ticker.FixedLocator(ticks, nbins=len(ticks)) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colorbar.py:1173, in Colorbar._reset_locator_formatter_scale(self) 1167 def _reset_locator_formatter_scale(self): 1168 """ 1169 Reset the locator et al to defaults. Any user-hardcoded changes 1170 need to be re-entered if this gets called (either at init, or when 1171 the mappable normal gets changed: Colorbar.update_normal) 1172 """ -> 1173 self._process_values() 1174 self._locator = None 1175 self._minorlocator = None File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colorbar.py:1107, in Colorbar._process_values(self) 1105 self.norm.vmin = 0 1106 self.norm.vmax = 1 -> 1107 self.norm.vmin, self.norm.vmax = mtransforms.nonsingular( 1108 self.norm.vmin, self.norm.vmax, expander=0.1) 1109 if (not isinstance(self.norm, colors.BoundaryNorm) and 1110 (self.boundaries is None)): 1111 b = self.norm.inverse(b) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colors.py:1250, in Normalize.vmin(self, value) 1248 if value != self._vmin: 1249 self._vmin = value -> 1250 self._changed() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colors.py:1278, in Normalize._changed(self) 1273 def _changed(self): 1274 """ 1275 Call this whenever the norm is changed to notify all the 1276 callback listeners to the 'changed' signal. 1277 """ -> 1278 self.callbacks.process('changed') File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cbook/__init__.py:309, in CallbackRegistry.process(self, s, *args, **kwargs) 307 except Exception as exc: 308 if self.exception_handler is not None: --> 309 self.exception_handler(exc) 310 else: 311 raise File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cbook/__init__.py:96, in _exception_printer(exc) 94 def _exception_printer(exc): 95 if _get_running_interactive_framework() in ["headless", None]: ---> 96 raise exc 97 else: 98 traceback.print_exc() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cbook/__init__.py:304, in CallbackRegistry.process(self, s, *args, **kwargs) 302 if func is not None: 303 try: --> 304 func(*args, **kwargs) 305 # this does not capture KeyboardInterrupt, SystemExit, 306 # and GeneratorExit 307 except Exception as exc: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cm.py:665, in ScalarMappable.changed(self) 660 def changed(self): 661 """ 662 Call this whenever the mappable is changed to notify all the 663 callbackSM listeners to the 'changed' signal. 664 """ --> 665 self.callbacks.process('changed', self) 666 self.stale = True File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cbook/__init__.py:309, in CallbackRegistry.process(self, s, *args, **kwargs) 307 except Exception as exc: 308 if self.exception_handler is not None: --> 309 self.exception_handler(exc) 310 else: 311 raise File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cbook/__init__.py:96, in _exception_printer(exc) 94 def _exception_printer(exc): 95 if _get_running_interactive_framework() in ["headless", None]: ---> 96 raise exc 97 else: 98 traceback.print_exc() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cbook/__init__.py:304, in CallbackRegistry.process(self, s, *args, **kwargs) 302 if func is not None: 303 try: --> 304 func(*args, **kwargs) 305 # this does not capture KeyboardInterrupt, SystemExit, 306 # and GeneratorExit 307 except Exception as exc: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colorbar.py:514, in Colorbar.update_normal(self, mappable) 511 self.norm = mappable.norm 512 self._reset_locator_formatter_scale() --> 514 self._draw_all() 515 if isinstance(self.mappable, contour.ContourSet): 516 CS = self.mappable File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colorbar.py:549, in Colorbar._draw_all(self) 543 self._short_axis().set_ticks([], minor=True) 545 # Set self._boundaries and self._values, including extensions. 546 # self._boundaries are the edges of each square of color, and 547 # self._values are the value to map into the norm to get the 548 # color: --> 549 self._process_values() 550 # Set self.vmin and self.vmax to first and last boundary, excluding 551 # extensions: 552 self.vmin, self.vmax = self._boundaries[self._inside][[0, -1]] File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colorbar.py:1111, in Colorbar._process_values(self) 1107 self.norm.vmin, self.norm.vmax = mtransforms.nonsingular( 1108 self.norm.vmin, self.norm.vmax, expander=0.1) 1109 if (not isinstance(self.norm, colors.BoundaryNorm) and 1110 (self.boundaries is None)): -> 1111 b = self.norm.inverse(b) 1113 self._boundaries = np.asarray(b, dtype=float) 1114 self._values = 0.5 * (self._boundaries[:-1] + self._boundaries[1:]) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colors.py:1724, in _make_norm_from_scale.<locals>.Norm.inverse(self, value) 1722 t_vmin, t_vmax = self._trf.transform([self.vmin, self.vmax]) 1723 if not np.isfinite([t_vmin, t_vmax]).all(): -> 1724 raise ValueError("Invalid vmin or vmax") 1725 value, is_scalar = self.process_value(value) 1726 rescaled = value * (t_vmax - t_vmin) ValueError: Invalid vmin or vmax
Error in callback <function _draw_all_if_interactive at 0x7f4944cb9760> (for post_execute):
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/pyplot.py:120, in _draw_all_if_interactive() 118 def _draw_all_if_interactive(): 119 if matplotlib.is_interactive(): --> 120 draw_all() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/_pylab_helpers.py:132, in Gcf.draw_all(cls, force) 130 for manager in cls.get_all_fig_managers(): 131 if force or manager.canvas.figure.stale: --> 132 manager.canvas.draw_idle() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/backend_bases.py:2082, in FigureCanvasBase.draw_idle(self, *args, **kwargs) 2080 if not self._is_idle_drawing: 2081 with self._idle_draw_cntx(): -> 2082 self.draw(*args, **kwargs) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/backends/backend_agg.py:400, in FigureCanvasAgg.draw(self) 396 # Acquire a lock on the shared font cache. 397 with RendererAgg.lock, \ 398 (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar 399 else nullcontext()): --> 400 self.figure.draw(self.renderer) 401 # A GUI class may be need to update a window using this draw, so 402 # don't forget to call the superclass. 403 super().draw() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args, **kwargs) 93 @wraps(draw) 94 def draw_wrapper(artist, renderer, *args, **kwargs): ---> 95 result = draw(artist, renderer, *args, **kwargs) 96 if renderer._rasterizing: 97 renderer.stop_rasterizing() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 69 if artist.get_agg_filter() is not None: 70 renderer.start_filter() ---> 72 return draw(artist, renderer) 73 finally: 74 if artist.get_agg_filter() is not None: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/figure.py:3140, in Figure.draw(self, renderer) 3137 # ValueError can occur when resizing a window. 3139 self.patch.draw(renderer) -> 3140 mimage._draw_list_compositing_images( 3141 renderer, self, artists, self.suppressComposite) 3143 for sfig in self.subfigs: 3144 sfig.draw(renderer) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/image.py:131, in _draw_list_compositing_images(renderer, parent, artists, suppress_composite) 129 if not_composite or not has_images: 130 for a in artists: --> 131 a.draw(renderer) 132 else: 133 # Composite any adjacent images together 134 image_group = [] File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 69 if artist.get_agg_filter() is not None: 70 renderer.start_filter() ---> 72 return draw(artist, renderer) 73 finally: 74 if artist.get_agg_filter() is not None: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/axes/_base.py:3064, in _AxesBase.draw(self, renderer) 3061 if artists_rasterized: 3062 _draw_rasterized(self.figure, artists_rasterized, renderer) -> 3064 mimage._draw_list_compositing_images( 3065 renderer, self, artists, self.figure.suppressComposite) 3067 renderer.close_group('axes') 3068 self.stale = False File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/image.py:131, in _draw_list_compositing_images(renderer, parent, artists, suppress_composite) 129 if not_composite or not has_images: 130 for a in artists: --> 131 a.draw(renderer) 132 else: 133 # Composite any adjacent images together 134 image_group = [] File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 69 if artist.get_agg_filter() is not None: 70 renderer.start_filter() ---> 72 return draw(artist, renderer) 73 finally: 74 if artist.get_agg_filter() is not None: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/collections.py:2074, in QuadMesh.draw(self, renderer) 2071 ys = self.convert_yunits(offsets[:, 1]) 2072 offsets = np.column_stack([xs, ys]) -> 2074 self.update_scalarmappable() 2076 if not transform.is_affine: 2077 coordinates = self._coordinates.reshape((-1, 2)) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/collections.py:887, in Collection.update_scalarmappable(self) 885 # pcolormesh, scatter, maybe others flatten their _A 886 self._alpha = self._alpha.reshape(self._A.shape) --> 887 self._mapped_colors = self.to_rgba(self._A, self._alpha) 889 if self._face_is_mapped: 890 self._facecolors = self._mapped_colors File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cm.py:493, in ScalarMappable.to_rgba(self, x, alpha, bytes, norm) 491 x = ma.asarray(x) 492 if norm: --> 493 x = self.norm(x) 494 rgba = self.cmap(x, alpha=alpha, bytes=bytes) 495 return rgba File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colors.py:1711, in _make_norm_from_scale.<locals>.Norm.__call__(self, value, clip) 1709 t_vmin, t_vmax = self._trf.transform([self.vmin, self.vmax]) 1710 if not np.isfinite([t_vmin, t_vmax]).all(): -> 1711 raise ValueError("Invalid vmin or vmax") 1712 t_value -= t_vmin 1713 t_value /= (t_vmax - t_vmin) ValueError: Invalid vmin or vmax
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/IPython/core/formatters.py:340, in BaseFormatter.__call__(self, obj) 338 pass 339 else: --> 340 return printer(obj) 341 # Finally look for special method names 342 method = get_real_method(obj, self.print_method) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/IPython/core/pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs) 149 from matplotlib.backend_bases import FigureCanvasBase 150 FigureCanvasBase(fig) --> 152 fig.canvas.print_figure(bytes_io, **kw) 153 data = bytes_io.getvalue() 154 if fmt == 'svg': File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/backend_bases.py:2342, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists, backend, **kwargs) 2336 renderer = _get_renderer( 2337 self.figure, 2338 functools.partial( 2339 print_method, orientation=orientation) 2340 ) 2341 with getattr(renderer, "_draw_disabled", nullcontext)(): -> 2342 self.figure.draw(renderer) 2344 if bbox_inches: 2345 if bbox_inches == "tight": File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args, **kwargs) 93 @wraps(draw) 94 def draw_wrapper(artist, renderer, *args, **kwargs): ---> 95 result = draw(artist, renderer, *args, **kwargs) 96 if renderer._rasterizing: 97 renderer.stop_rasterizing() File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 69 if artist.get_agg_filter() is not None: 70 renderer.start_filter() ---> 72 return draw(artist, renderer) 73 finally: 74 if artist.get_agg_filter() is not None: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/figure.py:3140, in Figure.draw(self, renderer) 3137 # ValueError can occur when resizing a window. 3139 self.patch.draw(renderer) -> 3140 mimage._draw_list_compositing_images( 3141 renderer, self, artists, self.suppressComposite) 3143 for sfig in self.subfigs: 3144 sfig.draw(renderer) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/image.py:131, in _draw_list_compositing_images(renderer, parent, artists, suppress_composite) 129 if not_composite or not has_images: 130 for a in artists: --> 131 a.draw(renderer) 132 else: 133 # Composite any adjacent images together 134 image_group = [] File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 69 if artist.get_agg_filter() is not None: 70 renderer.start_filter() ---> 72 return draw(artist, renderer) 73 finally: 74 if artist.get_agg_filter() is not None: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/axes/_base.py:3064, in _AxesBase.draw(self, renderer) 3061 if artists_rasterized: 3062 _draw_rasterized(self.figure, artists_rasterized, renderer) -> 3064 mimage._draw_list_compositing_images( 3065 renderer, self, artists, self.figure.suppressComposite) 3067 renderer.close_group('axes') 3068 self.stale = False File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/image.py:131, in _draw_list_compositing_images(renderer, parent, artists, suppress_composite) 129 if not_composite or not has_images: 130 for a in artists: --> 131 a.draw(renderer) 132 else: 133 # Composite any adjacent images together 134 image_group = [] File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/artist.py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 69 if artist.get_agg_filter() is not None: 70 renderer.start_filter() ---> 72 return draw(artist, renderer) 73 finally: 74 if artist.get_agg_filter() is not None: File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/collections.py:2074, in QuadMesh.draw(self, renderer) 2071 ys = self.convert_yunits(offsets[:, 1]) 2072 offsets = np.column_stack([xs, ys]) -> 2074 self.update_scalarmappable() 2076 if not transform.is_affine: 2077 coordinates = self._coordinates.reshape((-1, 2)) File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/collections.py:887, in Collection.update_scalarmappable(self) 885 # pcolormesh, scatter, maybe others flatten their _A 886 self._alpha = self._alpha.reshape(self._A.shape) --> 887 self._mapped_colors = self.to_rgba(self._A, self._alpha) 889 if self._face_is_mapped: 890 self._facecolors = self._mapped_colors File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/cm.py:493, in ScalarMappable.to_rgba(self, x, alpha, bytes, norm) 491 x = ma.asarray(x) 492 if norm: --> 493 x = self.norm(x) 494 rgba = self.cmap(x, alpha=alpha, bytes=bytes) 495 return rgba File ~/conda_envs/analysis-abdoul/lib/python3.11/site-packages/matplotlib/colors.py:1711, in _make_norm_from_scale.<locals>.Norm.__call__(self, value, clip) 1709 t_vmin, t_vmax = self._trf.transform([self.vmin, self.vmax]) 1710 if not np.isfinite([t_vmin, t_vmax]).all(): -> 1711 raise ValueError("Invalid vmin or vmax") 1712 t_value -= t_vmin 1713 t_value /= (t_vmax - t_vmin) ValueError: Invalid vmin or vmax
<Figure size 2000x400 with 6 Axes>
stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017],
[], [2011, 2012, 2013, 2014, 2015, 2016], [], [],
idepth, jdepth, Haro_Boundary, 'Haro_Boundary', 'alldepths')
stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017],
[], [2011, 2012, 2013, 2014, 2015, 2016], [], [],
idepth, jdepth, JdF_west, 'JdF_west', 'alldepths')
stats_and_plot([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [2015, 2016, 2017],
[], [2011, 2012, 2013, 2014, 2015, 2016], [], [],
idepth, jdepth, JdF_east, 'JdF_east', 'alldepths')
idepth = 0
jdepth = 5
number, results = stats_allregions([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019],
[], [2015, 2016, 2017], [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [],
[],
idepth, jdepth, 'top5m')
for boxname in boxnames:
if number > 0:
print(f'\033[1m{boxname}\033[1m')
display(results[results.region == boxname].loc[:, results.columns != 'region'].style.format(myformat).apply(highlight_max_min))
SS_all
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 6685 | 28.8 | 75.9 | 70.2 | 0.347 | 0.42 | 1.23e+02 | 42.3 | 53.9 | 0.405 |
202111 | 1644 | -6.78 | 43.5 | 42.9 | 0.182 | 0.311 | 78.1 | 20.1 | 33.9 | 0.4 |
SoG_south
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 100 | -9.0 | 33.0 | 31.7 | 0.126 | -0.0767 | -27.9 | 9.7 | 32.8 | 0.0501 |
202111 | 100 | 3.5 | 26.8 | 26.6 | 0.11 | 0.262 | 68.2 | 12.9 | 21.1 | 0.498 |
SoG_center
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 204 | -13.8 | 48.7 | 46.7 | 0.335 | 0.482 | 1.31e+02 | 29.7 | 32.7 | 0.532 |
202111 | 204 | -8.21 | 46.6 | 45.8 | 0.363 | 0.644 | 1.85e+02 | 36.0 | 24.9 | 0.708 |
SoG_north
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 145 | -6.33 | 62.5 | 62.2 | 0.342 | -0.113 | -35.5 | 9.12 | 65.6 | -0.033 |
202111 | 145 | -1.51 | 56.2 | 56.2 | 0.343 | 0.311 | 78.5 | 18.1 | 46.8 | 0.33 |
PS_main
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 3285 | 45.2 | 89.6 | 77.4 | 0.431 | 0.498 | 1.5e+02 | 58.3 | 57.5 | 0.348 |
Haro_Boundary
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 99 | 2.16 | 36.4 | 36.3 | 0.188 | -0.00352 | 1.4 | 2.16 | 36.4 | -0.044 |
202111 | 99 | 6.91 | 34.3 | 33.6 | 0.208 | 0.314 | 74.4 | 15.9 | 26.8 | 0.384 |
JdF_west
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 414 | 42.1 | 78.8 | 66.6 | 0.387 | 0.523 | 1.48e+02 | 55.7 | 47.0 | 0.49 |
202111 | 130 | 2.66 | 26.0 | 25.9 | 0.127 | 0.116 | 31.0 | 5.32 | 24.1 | 0.156 |
JdF_east
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 617 | 10.4 | 36.0 | 34.4 | 0.157 | 0.0397 | 18.3 | 10.5 | 33.7 | 0.0668 |
202111 | 131 | -3.88 | 20.3 | 19.9 | 0.0687 | 0.0868 | 15.5 | 5.27 | 18.8 | 0.201 |
idepth = 5
jdepth = 39
number, results = stats_allregions([2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019],
[2015, 2016, 2017], [], [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], [],
[],
idepth, jdepth, 'below5m')
for boxname in boxnames:
if number > 0:
print(f'\033[1m{boxname}\033[1m')
display(results[results.region == boxname].loc[:, results.columns != 'region'].style.format(myformat).apply(highlight_max_min))
SS_all
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 9116 | -21.8 | 41.0 | 34.7 | 0.113 | -0.116 | -43.0 | 22.8 | 36.2 | -0.222 |
202111 | 9116 | -2.58 | 29.4 | 29.2 | 0.0703 | 0.086 | 13.1 | 5.68 | 27.6 | 0.138 |
SoG_south
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 627 | -12.3 | 26.4 | 23.3 | 0.081 | -0.305 | -72.8 | 17.6 | 23.4 | -0.697 |
202111 | 627 | 1.52 | 16.1 | 16.0 | 0.0382 | -0.024 | -3.26 | 1.81 | 16.2 | -0.0999 |
SoG_center
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 1520 | -34.7 | 47.2 | 32.0 | 0.152 | -0.218 | -72.9 | 36.6 | 33.5 | -0.582 |
202111 | 1520 | 0.29 | 25.1 | 25.1 | 0.0602 | 0.0691 | 12.4 | 3.74 | 24.0 | 0.0258 |
SoG_north
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 832 | -34.1 | 50.9 | 37.7 | 0.211 | -0.0065 | -35.3 | 34.1 | 37.9 | -0.054 |
202111 | 832 | 0.18 | 36.8 | 36.8 | 0.161 | 0.314 | 56.3 | 17.0 | 28.6 | 0.415 |
PS_main
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread |
---|
Haro_Boundary
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 615 | -3.14 | 28.2 | 28.0 | 0.0928 | -0.0395 | -10.5 | 3.65 | 28.5 | -0.0543 |
202111 | 615 | 1.13 | 27.0 | 26.9 | 0.0916 | 0.0608 | 12.5 | 3.09 | 26.0 | 0.105 |
JdF_west
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 816 | -2.15 | 24.7 | 24.6 | 0.0342 | -0.0803 | -14.6 | 5.65 | 25.0 | -0.112 |
202111 | 816 | -3.07 | 21.4 | 21.2 | 0.0261 | -0.0568 | -11.9 | 4.81 | 21.5 | -0.0763 |
JdF_east
number | bias | rmse | crmse | swillmott | slopedev | const | systematic | nonsystematic | spread | |
---|---|---|---|---|---|---|---|---|---|---|
201905R | 625 | -3.14 | 19.2 | 18.9 | 0.0348 | -0.00167 | -3.44 | 3.14 | 18.9 | 0.00956 |
202111 | 625 | -2.52 | 17.3 | 17.1 | 0.0298 | 0.0507 | 6.65 | 3.65 | 16.5 | 0.112 |