<xarray.Dataset>
Dimensions: (time: 365, depth: 40, gridY: 898, gridX: 398)
Coordinates:
* time (time) datetime64[ns] 2019-01-01T12:00:00 ... 2019-12-31...
* depth (depth) float32 0.5 1.5 2.5 3.5 ... 360.7 387.6 414.5 441.5
* gridY (gridY) int64 0 1 2 3 4 5 6 ... 891 892 893 894 895 896 897
* gridX (gridX) int64 0 1 2 3 4 5 6 ... 391 392 393 394 395 396 397
Data variables: (12/13)
nooksack_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
skagit_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
snohomish_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
nisqually_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
elwha_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
cowichan_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
... ...
puntledge_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
salmon_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
homathko_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
squamish_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
fraser_river (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
other_rivers (time, depth, gridY, gridX) float64 dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray> Dimensions: time : 365depth : 40gridY : 898gridX : 398
Coordinates: (4)
time
(time)
datetime64[ns]
2019-01-01T12:00:00 ... 2019-12-...
standard_name : time long_name : Time Axis time_origin : 2007-01-01 12:00:00 comment : time values are UTC at the centre of the intervals over which the calculated model results are averaged; e.g. the field average values for 8 February 2022 have a time value of 2022-02-08 12:00:00Z array(['2019-01-01T12:00:00.000000000', '2019-01-02T12:00:00.000000000',
'2019-01-03T12:00:00.000000000', ..., '2019-12-29T12:00:00.000000000',
'2019-12-30T12:00:00.000000000', '2019-12-31T12:00:00.000000000'],
dtype='datetime64[ns]') depth
(depth)
float32
0.5 1.5 2.5 ... 387.6 414.5 441.5
long_name : Sea Floor Depth standard_name : sea_floor_depth units : metres positive : down array([ 0.5 , 1.500003, 2.500011, 3.500031, 4.500071, 5.500151,
6.50031 , 7.500623, 8.501236, 9.502433, 10.504766, 11.509312,
12.518167, 13.535412, 14.568982, 15.634288, 16.761173, 18.007135,
19.481785, 21.389978, 24.100256, 28.229916, 34.685757, 44.517723,
58.484333, 76.58559 , 98.06296 , 121.866516, 147.08946 , 173.11449 ,
199.57304 , 226.2603 , 253.06664 , 279.93454 , 306.8342 , 333.75018 ,
360.67453 , 387.6032 , 414.5341 , 441.4661 ], dtype=float32) gridY
(gridY)
int64
0 1 2 3 4 5 ... 893 894 895 896 897
standard_name : y long_name : Grid Y units : count comment : gridY values are grid indices in the model y-direction array([ 0, 1, 2, ..., 895, 896, 897]) gridX
(gridX)
int64
0 1 2 3 4 5 ... 393 394 395 396 397
units : count standard_name : x long_name : Grid X comment : gridX values are grid indices in the model x-direction array([ 0, 1, 2, ..., 395, 396, 397]) Data variables: (13)
nooksack_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
skagit_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
snohomish_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
nisqually_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
elwha_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
cowichan_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
nanaimo_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
puntledge_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
salmon_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
homathko_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
squamish_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
fraser_river
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
other_rivers
(time, depth, gridY, gridX)
float64
dask.array<chunksize=(1, 40, 898, 398), meta=np.ndarray>
Array
Chunk
Bytes
38.88 GiB
109.07 MiB
Shape
(365, 40, 898, 398)
(1, 40, 898, 398)
Dask graph
365 chunks in 2 graph layers
Data type
float64 numpy.ndarray
365
1
398
898
40
Indexes: (4)
PandasIndex
PandasIndex(DatetimeIndex(['2019-01-01 12:00:00', '2019-01-02 12:00:00',
'2019-01-03 12:00:00', '2019-01-04 12:00:00',
'2019-01-05 12:00:00', '2019-01-06 12:00:00',
'2019-01-07 12:00:00', '2019-01-08 12:00:00',
'2019-01-09 12:00:00', '2019-01-10 12:00:00',
...
'2019-12-22 12:00:00', '2019-12-23 12:00:00',
'2019-12-24 12:00:00', '2019-12-25 12:00:00',
'2019-12-26 12:00:00', '2019-12-27 12:00:00',
'2019-12-28 12:00:00', '2019-12-29 12:00:00',
'2019-12-30 12:00:00', '2019-12-31 12:00:00'],
dtype='datetime64[ns]', name='time', length=365, freq=None)) PandasIndex
PandasIndex(Float64Index([0.5000002980232239, 1.5000030994415283, 2.500011444091797,
3.500030517578125, 4.500070571899414, 5.500150680541992,
6.50031042098999, 7.5006232261657715, 8.501235961914062,
9.502432823181152, 10.504765510559082, 11.50931167602539,
12.518166542053223, 13.535411834716797, 14.568982124328613,
15.63428783416748, 16.761173248291016, 18.00713539123535,
19.48178482055664, 21.389978408813477, 24.100255966186523,
28.229915618896484, 34.68575668334961, 44.517723083496094,
58.48433303833008, 76.58558654785156, 98.06295776367188,
121.86651611328125, 147.08946228027344, 173.11448669433594,
199.5730438232422, 226.2602996826172, 253.06663513183594,
279.9345397949219, 306.8341979980469, 333.75018310546875,
360.6745300292969, 387.60321044921875, 414.5340881347656,
441.4660949707031],
dtype='float64', name='depth')) PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
888, 889, 890, 891, 892, 893, 894, 895, 896, 897],
dtype='int64', name='gridY', length=898)) PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
388, 389, 390, 391, 392, 393, 394, 395, 396, 397],
dtype='int64', name='gridX', length=398)) Attributes: (0)