import sqlalchemy
from sqlalchemy import (create_engine, Column, String, Integer, Float, MetaData,
Table, type_coerce, ForeignKey, case)
from sqlalchemy.orm import mapper, create_session, relationship, aliased, Session
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import case
import numpy as np
from sqlalchemy.ext.automap import automap_base
import matplotlib.pyplot as plt
import sqlalchemy.types as types
from sqlalchemy.sql import and_, or_, not_, func
from sqlalchemy.sql import select
import os
from os.path import isfile
import pandas as pd
import netCDF4 as nc
import datetime as dt
%matplotlib inline
PATH= '/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_M5/'
# definitions
basepath='/ocean/eolson/MEOPAR/obs/'
basedir=basepath + 'DFOOPDB/'
dbname='DFO_OcProfDB'
# if db does not exist, exit
if not isfile(basedir + dbname + '.sqlite'):
print('ERROR: ' + dbname + '.sqlite does not exist')
engine = create_engine('sqlite:///' + basedir + dbname + '.sqlite', echo = False)
Base = automap_base()
# reflect the tables in salish.sqlite:
Base.prepare(engine, reflect=True)
# mapped classes have been created
# existing tables:
StationTBL=Base.classes.StationTBL
ObsTBL=Base.classes.ObsTBL
CalcsTBL=Base.classes.CalcsTBL
JDFLocsTBL=Base.classes.JDFLocsTBL
session = create_session(bind = engine, autocommit = False, autoflush = True)
qry0=(session
.query(StationTBL.StartTimeZone.label('TimeZone'))
.filter(StationTBL.StartYear>2014)
.group_by(StationTBL.StartTimeZone))
for row in qry0.all():
print(row)
# one value means time zone is the same for all data for 2015 on
('UTC',)
SA=case([(CalcsTBL.Salinity_Bottle_SA!=None, CalcsTBL.Salinity_Bottle_SA)], else_=
case([(CalcsTBL.Salinity_T0_C0_SA!=None, CalcsTBL.Salinity_T0_C0_SA)], else_=
case([(CalcsTBL.Salinity_T1_C1_SA!=None, CalcsTBL.Salinity_T1_C1_SA)], else_=
case([(CalcsTBL.Salinity_SA!=None, CalcsTBL.Salinity_SA)], else_=
case([(CalcsTBL.Salinity__Unknown_SA!=None, CalcsTBL.Salinity__Unknown_SA)],
else_=CalcsTBL.Salinity__Pre1978_SA)
))))
Tem=case([(ObsTBL.Temperature!=None, ObsTBL.Temperature)], else_=
case([(ObsTBL.Temperature_Primary!=None, ObsTBL.Temperature_Primary)], else_=
case([(ObsTBL.Temperature_Secondary!=None, ObsTBL.Temperature_Secondary)], else_=ObsTBL.Temperature_Reversing)))
TemUnits=case([(ObsTBL.Temperature!=None, ObsTBL.Temperature_units)], else_=
case([(ObsTBL.Temperature_Primary!=None, ObsTBL.Temperature_Primary_units)], else_=
case([(ObsTBL.Temperature_Secondary!=None, ObsTBL.Temperature_Secondary_units)],
else_=ObsTBL.Temperature_Reversing_units)))
TemFlag=ObsTBL.Quality_Flag_Temp
qry1=session.query(ObsTBL.Nitrate_plus_Nitrite_units).group_by(ObsTBL.Nitrate_plus_Nitrite_units)
for row in qry1.all():
print(row)
(None,) ('umol/L',)
qry=session.query(StationTBL.StartYear.label('Year'),StationTBL.StartMonth.label('Month'),
StationTBL.StartDay.label('Day'),StationTBL.StartHour.label('Hour'),
StationTBL.Lat,StationTBL.Lon,
ObsTBL.Pressure,ObsTBL.Depth,ObsTBL.Ammonium,ObsTBL.Ammonium_units,ObsTBL.Chlorophyll_Extracted,
ObsTBL.Chlorophyll_Extracted_units,ObsTBL.Nitrate_plus_Nitrite.label('N'),
ObsTBL.Silicate.label('Si'),ObsTBL.Silicate_units,SA.label('AbsSal'),Tem.label('T'),TemUnits.label('T_units')).\
select_from(StationTBL).join(ObsTBL,ObsTBL.StationTBLID==StationTBL.ID).\
join(CalcsTBL,CalcsTBL.ObsID==ObsTBL.ID).filter(and_(StationTBL.StartYear>2014,
StationTBL.Lat>47-3/2.5*(StationTBL.Lon+123.5),
StationTBL.Lat<47-3/2.5*(StationTBL.Lon+121)))
df1=pd.DataFrame(qry.all())
df1.head()
Year | Month | Day | Hour | Lat | Lon | Pressure | Depth | Ammonium | Ammonium_units | Chlorophyll_Extracted | Chlorophyll_Extracted_units | N | Si | Silicate_units | AbsSal | T | T_units | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2015.0 | 2.0 | 11.0 | 11.068611 | 48.300833 | -124.000333 | 1.9 | None | None | None | NaN | mg/m^3 | 15.31 | 32.14 | umol/L | 29.227507 | 9.7647 | 'deg_C_(ITS90)' |
1 | 2015.0 | 2.0 | 11.0 | 11.068611 | 48.300833 | -124.000333 | 6.6 | None | None | None | 2.57 | mg/m^3 | 17.13 | 33.90 | umol/L | 29.484341 | 9.6880 | 'deg_C_(ITS90)' |
2 | 2015.0 | 2.0 | 11.0 | 11.068611 | 48.300833 | -124.000333 | 6.7 | None | None | None | NaN | mg/m^3 | NaN | NaN | umol/L | 29.484839 | 9.6828 | 'deg_C_(ITS90)' |
3 | 2015.0 | 2.0 | 11.0 | 11.068611 | 48.300833 | -124.000333 | 11.0 | None | None | None | NaN | mg/m^3 | NaN | NaN | umol/L | 30.144549 | 9.3646 | 'deg_C_(ITS90)' |
4 | 2015.0 | 2.0 | 11.0 | 11.068611 | 48.300833 | -124.000333 | 11.0 | None | None | None | NaN | mg/m^3 | 20.62 | 37.65 | umol/L | 30.157913 | 9.3586 | 'deg_C_(ITS90)' |
with nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') as f:
tmask=np.copy(f.variables['tmask'])
lon=np.copy(f.variables['nav_lon'])
lat=np.copy(f.variables['nav_lat'])
plt.pcolormesh(lon,lat,tmask[0,0,:,:])
plt.plot(df1.Lon,df1.Lat,'k*')
x0=-123.5
y0=47
x1=-126
y1=50
x=np.arange(-127,-123,.5)
y=y0+(y1-y0)/(x1-x0)*(x-x0) # take lat>47-3/2.5*(lon+123.5)
plt.plot(x,y,'m-')
x0=-121
y0=47
x1=-123.5
y1=50
x=np.arange(-124,-120,.5)
y=y0+(y1-y0)/(x1-x0)*(x-x0) # take lat<47-3/2.5*(lon+121)
plt.plot(x,y,'m-')
[<matplotlib.lines.Line2D at 0x7f0b80638860>]
plt.plot(df1['N'],df1['Si'],'k.')
plt.xlabel('N')
plt.ylabel('Si')
<matplotlib.text.Text at 0x7f0b80615908>
from salishsea_tools import gsw_calls, viz_tools, geo_tools, tidetools
import datetime
import glob
depths = gsw_calls.generic_gsw_caller('gsw_z_from_p.m',
[df1.Pressure.values, df1.Lat.values])
depths = depths * -1
df1 = df1.assign(depth = depths)
df1.shape
(2495, 19)
df1.dropna(subset=['Year', 'Month', 'Hour', 'Lat', 'Lon','Pressure']).shape
(2495, 19)
df2 = df1.dropna(subset=['Year', 'Month', 'Hour', 'Lat', 'Lon', 'Si', 'N'])
deptht = (nc.Dataset(
'/results/SalishSea/nowcast-green/01jan18/SalishSea_1d_20180101_20180101_dia2_T.nc')
.variables['deptht'][:])
deptht
array([ 0.5000003 , 1.5000031 , 2.50001144, 3.50003052, 4.50007057, 5.50015068, 6.50031042, 7.50062323, 8.50123596, 9.50243282, 10.50476551, 11.50931168, 12.51816654, 13.53541183, 14.56898212, 15.63428783, 16.76117325, 18.00713539, 19.48178482, 21.38997841, 24.10025597, 28.22991562, 34.68575668, 44.51772308, 58.48433304, 76.58558655, 98.06295776, 121.86651611, 147.08946228, 173.11448669, 199.57304382, 226.26029968, 253.06663513, 279.93453979, 306.834198 , 333.75018311, 360.67453003, 387.60321045, 414.53408813, 441.46609497], dtype=float32)
grid = nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/bathymetry_201702.nc')
bathy, X, Y = tidetools.get_bathy_data(grid)
mesh = nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/mesh_mask201702.nc')
start_date = datetime.datetime(2015,2,6)
end_date = datetime.datetime(2015,11,12)
numfiles=int(((end_date-start_date).days+1)/10)
numfiles
28
df2.shape[0]
2329
dates = np.array([datetime.datetime(year = int(df2.Year[n]),
month = int(df2.Month[n]),
day = int(df2.Day[n]),
hour = int(df2.Hour[n]),
minute = int((df2.Hour[n] - int(df2.Hour[n]))*60))
for n in df2.index])
df2 = df2.assign(date = dates)
bounds = np.array([start_date + datetime.timedelta(days = n*10) for n in range(numfiles+1) ])
bounds[-1]
datetime.datetime(2015, 11, 13, 0, 0)
bounds_r = (bounds - datetime.timedelta(days = 1))[1:]
bounds_l = bounds[:-1]
bounds_r[:2]
array([datetime.datetime(2015, 2, 15, 0, 0), datetime.datetime(2015, 2, 25, 0, 0)], dtype=object)
for n in range(numfiles):
bounds_l[n] = bounds_l[n].replace(minute = 30)
for n in range(numfiles):
bounds_r[n] = bounds_r[n].replace(hour = 23, minute = 30)
list_of_lons = np.array([])
list_of_lats = np.array([])
list_of_datetimes = np.array([])
list_of_cs_ni = np.array([])
list_of_cs_si = np.array([])
list_of_model_ni = np.array([])
list_of_model_si = np.array([])
list_of_depths = np.array([])
for n in df2[(df2.date > start_date) & (df2.date < end_date)].index:
date = df2.date[n]
Yind, Xind = geo_tools.find_closest_model_point(df2.Lon[n], df2.Lat[n],
X, Y, land_mask = bathy.mask)
depth = np.argmin(np.abs(deptht - df2.depth[n]))
if mesh.variables['tmask'][0,depth,Yind, Xind] == 1:
for m in range(numfiles):
if (date > bounds[m]) & (date < bounds[m+1]):
here = m
datestr_l = bounds_l[here].strftime('%Y%m%d')
datestr_r = bounds_r[here].strftime('%Y%m%d')
datestr = datestr_l + '-' + datestr_r
nuts = nc.Dataset(glob.glob(PATH + 'SalishSea*1h*ptrc_T*' + datestr +'.nc')[0])
if date.minute < 30:
before = datetime.datetime(year = date.year, month = date.month, day = date.day,
hour = (date.hour), minute = 30) - datetime.timedelta(hours=1)
if date.minute >= 30:
before = datetime.datetime(year = date.year, month = date.month, day = date.day,
hour = (date.hour), minute = 30)
delta = (date.minute) / 60
hour = (before - bounds_l[here]).days * 24 + int((before - bounds_l[here]).seconds / 60 / 60)
ni_val = (delta*(nuts.variables['nitrate'][hour, depth, Yind, Xind] ) +
(1- delta)*(nuts.variables['nitrate'][hour+1, depth, Yind, Xind] ))
si_val = (delta*(nuts.variables['silicon'][hour, depth, Yind, Xind] ) +
(1- delta)*(nuts.variables['silicon'][hour+1, depth, Yind, Xind] ))
list_of_lons = np.append(list_of_lons, df2.Lon[n])
list_of_lats = np.append(list_of_lats, df2.Lat[n])
list_of_datetimes = np.append(list_of_datetimes, date)
list_of_cs_ni = np.append(list_of_cs_ni, float(df2['N'][n]))
list_of_cs_si = np.append(list_of_cs_si, float(df2['Si'][n]))
list_of_model_ni = np.append(list_of_model_ni, ni_val)
list_of_model_si = np.append(list_of_model_si, si_val)
#list_of_depths = np.append(list_of_depths, depth)
list_of_depths = np.append(list_of_depths, df2.depth[n])
df2.depth[n]
2.7761999999999998
list_of_cs_ni.shape
(560,)
print('shallow nutrient samples', list_of_cs_ni[list_of_depths < 15].shape)
shallow nutrient samples (136,)
print('intermediate nutrient samples', list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)].shape)
intermediate nutrient samples (41,)
print('deep nutrient samples', list_of_cs_ni[list_of_depths >= 22].shape)
deep nutrient samples (383,)
fig, ax = plt.subplots(figsize = (10,10))
viz_tools.set_aspect(ax, coords = 'map')
ax.plot(list_of_lons, list_of_lats, 'ro')
ax.plot(list_of_lons[(list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_lats[(list_of_lons < -123.5) & (list_of_lats < 48.6)],
'bo', label = 'Juan de Fuca')
viz_tools.plot_coastline(ax, grid, coords = 'map')
ax.set_ylim(48, 50.5)
ax.legend()
ax.set_xlim(-125.7, -122.5);
fig, ax = plt.subplots(figsize = (8,8))
ax.plot(list_of_cs_ni[list_of_depths < 15], list_of_model_ni[list_of_depths < 15],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax.plot(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)],
list_of_model_ni[(22 > list_of_depths) & (list_of_depths >= 15)],
'.', color = 'DarkOrange', alpha = 0.5, label = 'intermediate')
ax.plot(list_of_cs_ni[list_of_depths >= 22], list_of_model_ni[list_of_depths >= 22],
'.', color = 'darkblue', alpha = 0.5, label = 'deep')
ax.plot(list_of_cs_ni[(list_of_depths < 15) & (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_ni[(list_of_depths < 15) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'ForestGreen', alpha = 0.5, label = ' Juan de Fuca surface')
ax.plot(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_ni[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
'.', color = 'CornflowerBlue', alpha = 0.5, label = ' Juan de Fuca intermediate')
ax.plot(list_of_cs_ni[(list_of_depths >= 22) & (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_ni[(list_of_depths >= 22) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'DarkOrchid', alpha = 0.5, label = ' Juan de Fuca deep')
ax.plot(np.arange(0,35), color = 'grey')
ax.grid('on')
ax.set_title('DFO Nitrate')
ax.set_xlabel('DFO')
ax.set_ylabel('Nowcast-green');
ax.legend(loc=4)
print('surface bias = ' + str(-np.mean(list_of_cs_ni[list_of_depths < 15])
+ np.mean(list_of_model_ni[list_of_depths < 15])))
print('surface RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni[list_of_depths < 15]
- list_of_cs_ni[list_of_depths < 15])**2) /
len(list_of_cs_ni[list_of_depths < 15]))))
xbar = np.mean(list_of_cs_ni[list_of_depths < 15])
print('surface Willmott = ' + str(1-(np.sum((list_of_model_ni[list_of_depths < 15]
- list_of_cs_ni[list_of_depths < 15])**2) /
np.sum((np.abs(list_of_model_ni[list_of_depths < 15] - xbar)
+ np.abs(list_of_cs_ni[list_of_depths < 15] - xbar))**2))))
print('intermediate bias = ' + str(-np.mean(list_of_cs_ni[(22 > list_of_depths)
& (list_of_depths >= 15)])
+ np.mean(list_of_model_ni[(22 > list_of_depths)
& (list_of_depths >= 15)])))
print('intermediate RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni[(22 > list_of_depths)
& (list_of_depths >= 15)]
- list_of_cs_ni[(22 > list_of_depths)
& (list_of_depths >= 15)])**2) /
len(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)]))))
xbar = np.mean(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)])
print('intermediate Willmott = ' + str(1-(np.sum((list_of_model_ni[(22 > list_of_depths)
& (list_of_depths >= 15)]
- list_of_cs_ni[(22 > list_of_depths)
& (list_of_depths >= 15)])**2) /
np.sum((np.abs(list_of_model_ni[(22 > list_of_depths)
& (list_of_depths >= 15)] - xbar)
+ np.abs(list_of_cs_ni[(22 > list_of_depths)
& (list_of_depths >= 15)] - xbar))**2))))
print('deep bias = ' + str(-np.mean(list_of_cs_ni[list_of_depths >= 22])
+ np.mean(list_of_model_ni[list_of_depths >= 22])))
print('deep RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni[list_of_depths >= 22]
- list_of_cs_ni[list_of_depths >= 22])**2) /
len(list_of_cs_ni[list_of_depths >= 22]))))
xbar = np.mean(list_of_cs_ni[list_of_depths >= 22])
print('deep Willmott = ' + str(1-(np.sum((list_of_model_ni[list_of_depths >= 22]
- list_of_cs_ni[list_of_depths >= 22])**2) /
np.sum((np.abs(list_of_model_ni[list_of_depths >= 22] - xbar)
+ np.abs(list_of_cs_ni[list_of_depths >= 22] - xbar))**2))))
print('bias = ' + str(-np.mean(list_of_cs_ni) + np.mean(list_of_model_ni)))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni - list_of_cs_ni)**2) /
len(list_of_cs_ni))))
xbar = np.mean(list_of_cs_ni)
print('Willmott = ' + str(1-(np.sum((list_of_model_ni - list_of_cs_ni)**2) /
np.sum((np.abs(list_of_model_ni - xbar)
+ np.abs(list_of_cs_ni - xbar))**2))))
surface bias = -0.813383153806 surface RMSE = 5.95261779811 surface Willmott = 0.850252606002 intermediate bias = 0.929369490321 intermediate RMSE = 5.55266738498 intermediate Willmott = 0.628544379094 deep bias = 0.490691209391 deep RMSE = 3.65658772908 deep Willmott = 0.744876561194 bias = 0.206104952469 RMSE = 4.47294387087 Willmott = 0.914436863316
fig,ax=plt.subplots(1,4,figsize=(24,6))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,4,1))
ax[0].plot(list_of_cs_ni[ii], list_of_model_ni[ii],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[0].set_title('Feb-Mar')
print('Feb-Mar')
print('bias = ' + str(-np.mean(list_of_cs_ni[ii]) + np.mean(list_of_model_ni[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
len(list_of_cs_ni[ii]))))
xbar = np.mean(list_of_cs_ni[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
np.sum((np.abs(list_of_model_ni[ii] - xbar)
+ np.abs(list_of_cs_ni[ii] - xbar))**2))))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,5,1))&(list_of_datetimes>dt.datetime(2015,4,1))
ax[1].plot(list_of_cs_ni[ii], list_of_model_ni[ii],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[1].set_title('April')
print('April')
print('bias = ' + str(-np.mean(list_of_cs_ni[ii]) + np.mean(list_of_model_ni[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
len(list_of_cs_ni[ii]))))
xbar = np.mean(list_of_cs_ni[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
np.sum((np.abs(list_of_model_ni[ii] - xbar)
+ np.abs(list_of_cs_ni[ii] - xbar))**2))))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,9,1))&(list_of_datetimes>dt.datetime(2015,5,1))
cs=ax[2].scatter(list_of_cs_ni[ii], list_of_model_ni[ii], c=np.array([np.float((ii-dt.datetime(2015,3,1)).days) for ii in list_of_datetimes[ii]]), alpha = 0.5, label = 'surface')
ax[2].set_title('May-Jun-Jul')
plt.colorbar(cs)
print('May-Jun-Jul')
print('bias = ' + str(-np.mean(list_of_cs_ni[ii]) + np.mean(list_of_model_ni[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
len(list_of_cs_ni[ii]))))
xbar = np.mean(list_of_cs_ni[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
np.sum((np.abs(list_of_model_ni[ii] - xbar)
+ np.abs(list_of_cs_ni[ii] - xbar))**2))))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,12,1))&(list_of_datetimes>dt.datetime(2015,9,1))
ax[3].plot(list_of_cs_ni[ii], list_of_model_ni[ii],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[3].set_title('Sep-Oct')
print('Sep-Oct')
print('bias = ' + str(-np.mean(list_of_cs_ni[ii]) + np.mean(list_of_model_ni[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
len(list_of_cs_ni[ii]))))
xbar = np.mean(list_of_cs_ni[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_ni[ii] - list_of_cs_ni[ii])**2) /
np.sum((np.abs(list_of_model_ni[ii] - xbar)
+ np.abs(list_of_cs_ni[ii] - xbar))**2))))
for ii in range(0,4):
ax[ii].plot(np.arange(0,35), color = 'grey')
Feb-Mar bias = 1.64033617496 RMSE = 3.21049089314 Willmott = 0.739069437449 April bias = -3.32843099768 RMSE = 5.91817234923 Willmott = 0.736163790318 May-Jun-Jul bias = -2.20912816557 RMSE = 4.79366827663 Willmott = 0.75878248568 Sep-Oct bias = 6.92074895455 RMSE = 7.71972973794 Willmott = 0.701127775376
fig,ax=plt.subplots(1,1,figsize=(24,1))
plt.plot(list_of_datetimes,np.ones(np.shape(list_of_datetimes)),'k.')
[<matplotlib.lines.Line2D at 0x7f0b7461cc50>]
fig, ax = plt.subplots(figsize = (8,8))
ax.plot(list_of_cs_ni[list_of_depths < 15], list_of_model_ni[list_of_depths < 15],
'.', color = 'Crimson', alpha = 0.8, label = 'surface')
ax.plot(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)],
list_of_model_ni[(22 > list_of_depths) & (list_of_depths >= 15)],
'.', color = 'DarkOrange', alpha = 0.8, label = 'intermediate')
ax.plot(list_of_cs_ni[(list_of_depths < 15) & (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_ni[(list_of_depths < 15) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'ForestGreen', alpha = 0.8, label = ' Juan de Fuca surface')
ax.plot(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_ni[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
'.', color = 'CornflowerBlue', alpha = 0.8, label = ' Juan de Fuca intermediate')
ax.plot(np.arange(0,35), color = 'grey')
ax.grid('on')
ax.set_title('DFO Nitrate')
ax.set_xlabel('DFO')
ax.set_ylabel('Nowcast-green');
ax.legend(loc=4)
<matplotlib.legend.Legend at 0x7f0b74492518>
np.shape(list_of_depths)
(560,)
fig, ax = plt.subplots(figsize = (8,8))
ax.plot(list_of_cs_si[list_of_depths < 15], list_of_model_si[list_of_depths < 15],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax.plot(list_of_cs_si[(22 > list_of_depths) & (list_of_depths >= 15)],
list_of_model_si[(22 > list_of_depths) & (list_of_depths >= 15)],
'.', color = 'DarkOrange', alpha = 0.5, label = 'intermediate')
ax.plot(list_of_cs_si[list_of_depths >= 22], list_of_model_si[list_of_depths >= 22],
'.', color = 'darkblue', alpha = 0.5, label = 'deep')
ax.plot(list_of_cs_si[(list_of_depths < 15) & (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_si[(list_of_depths < 15) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'ForestGreen', alpha = 0.5, label = ' Juan de Fuca surface')
ax.plot(list_of_cs_si[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_si[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
'.', color = 'CornflowerBlue', alpha = 0.5, label = ' Juan de Fuca intermediate')
ax.plot(list_of_cs_si[(list_of_depths >= 22) & (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_si[(list_of_depths >= 22) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'DarkOrchid', alpha = 0.5, label = ' Juan de Fuca deep')
ax.plot(np.arange(0,56), color = 'grey')
ax.grid('on')
ax.set_title('DFO Silicon')
ax.set_xlabel('DFO')
ax.set_ylabel('Nowcast-green');
ax.legend(loc=4)
print('surface bias = ' + str(-np.mean(list_of_cs_si[list_of_depths < 15])
+ np.mean(list_of_model_si[list_of_depths < 15])))
print('surface RMSE = ' + str(np.sqrt(np.sum((list_of_model_si[list_of_depths < 15]
- list_of_cs_si[list_of_depths < 15])**2) /
len(list_of_cs_si[list_of_depths < 15]))))
xbar = np.mean(list_of_cs_si[list_of_depths < 15])
print('surface Willmott = ' + str(1-(np.sum((list_of_model_si[list_of_depths < 15]
- list_of_cs_si[list_of_depths < 15])**2) /
np.sum((np.abs(list_of_model_si[list_of_depths < 15] - xbar)
+ np.abs(list_of_cs_si[list_of_depths < 15] - xbar))**2))))
print('intermediate bias = ' + str(-np.mean(list_of_cs_si[(22 > list_of_depths)
& (list_of_depths >= 15)])
+ np.mean(list_of_model_si[(22 > list_of_depths)
& (list_of_depths >= 15)])))
print('intermediate RMSE = ' + str(np.sqrt(np.sum((list_of_model_si[(22 > list_of_depths)
& (list_of_depths >= 15)]
- list_of_cs_si[(22 > list_of_depths)
& (list_of_depths >= 15)])**2) /
len(list_of_cs_si[(22 > list_of_depths) & (list_of_depths >= 15)]))))
xbar = np.mean(list_of_cs_si[(22 > list_of_depths) & (list_of_depths >= 15)])
print('intermediate Willmott = ' + str(1-(np.sum((list_of_model_si[(22 > list_of_depths)
& (list_of_depths >= 15)]
- list_of_cs_si[(22 > list_of_depths)
& (list_of_depths >= 15)])**2) /
np.sum((np.abs(list_of_model_si[(22 > list_of_depths)
& (list_of_depths >= 15)] - xbar)
+ np.abs(list_of_cs_si[(22 > list_of_depths)
& (list_of_depths >= 15)] - xbar))**2))))
print('deep bias = ' + str(-np.mean(list_of_cs_si[list_of_depths >= 22])
+ np.mean(list_of_model_si[list_of_depths >= 22])))
print('deep RMSE = ' + str(np.sqrt(np.sum((list_of_model_si[list_of_depths >= 22]
- list_of_cs_si[list_of_depths >= 22])**2) /
len(list_of_cs_si[list_of_depths >= 22]))))
xbar = np.mean(list_of_cs_si[list_of_depths >= 22])
print('deep Willmott = ' + str(1-(np.sum((list_of_model_si[list_of_depths >= 22]
- list_of_cs_si[list_of_depths >= 22])**2) /
np.sum((np.abs(list_of_model_si[list_of_depths >= 22] - xbar)
+ np.abs(list_of_cs_si[list_of_depths >= 22] - xbar))**2))))
print('bias = ' + str(-np.mean(list_of_cs_si) + np.mean(list_of_model_si)))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_si - list_of_cs_si)**2) /
len(list_of_cs_si))))
xbar = np.mean(list_of_cs_si)
print('Willmott = ' + str(1-(np.sum((list_of_model_si - list_of_cs_si)**2) /
np.sum((np.abs(list_of_model_si - xbar)
+ np.abs(list_of_cs_si - xbar))**2))))
surface bias = -12.2333973756 surface RMSE = 16.3839980279 surface Willmott = 0.658032460375 intermediate bias = -2.68847016955 intermediate RMSE = 10.320808345 intermediate Willmott = 0.670495262499 deep bias = -3.20549371414 deep RMSE = 6.9841430958 deep Willmott = 0.857790185022 bias = -5.36013109383 RMSE = 10.3126627511 Willmott = 0.86045752392
fig, ax = plt.subplots(1,2, figsize = (16,8))
ax[0].plot(list_of_cs_ni[list_of_depths >= 22], list_of_cs_si[list_of_depths >=22],
'.', color = 'darkblue', alpha = 0.5)
ax[0].plot(list_of_cs_ni[list_of_depths < 15], list_of_cs_si[list_of_depths < 15],
'.', color = 'Crimson', alpha = 0.5)
ax[0].plot(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)],
list_of_cs_si[(22 > list_of_depths) & (list_of_depths >= 15)],
'.', color = 'DarkOrange', alpha = 0.5)
ax[0].plot(list_of_cs_ni[(list_of_depths >= 22) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
list_of_cs_si[(list_of_depths >= 22) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'DarkOrchid', alpha = 0.5)
ax[0].plot(list_of_cs_ni[(list_of_depths < 15) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
list_of_cs_si[(list_of_depths < 15) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'ForestGreen', alpha = 0.5)
ax[0].plot(list_of_cs_ni[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_cs_si[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
'.', color = 'CornflowerBlue', alpha = 0.5)
ax[0].plot(np.unique(list_of_cs_ni),
np.poly1d(np.polyfit(list_of_cs_ni, list_of_cs_si, 1))(np.unique(list_of_cs_ni)))
x = np.arange(0,40)
ax[0].plot(x, 2*x, 'g-', alpha = 0.3)
ax[0].plot(x, 2*x+30, 'y-', alpha = 0.3)
ax[1].plot(list_of_model_ni[list_of_depths < 15], list_of_model_si[list_of_depths < 15],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[1].plot(list_of_model_ni[(22 > list_of_depths) & (list_of_depths >= 15)],
list_of_model_si[(22 > list_of_depths) & (list_of_depths >= 15)],
'.', color = 'DarkOrange', alpha = 0.5, label = 'intermediate')
ax[1].plot(list_of_model_ni[list_of_depths >= 22], list_of_model_si[list_of_depths >=22],
'.', color = 'darkblue', alpha = 0.5, label = 'deep')
ax[1].plot(list_of_model_ni[(list_of_depths < 15) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
list_of_model_si[(list_of_depths < 15) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'ForestGreen', alpha = 0.5, label = 'Juan de Fuca surface')
ax[1].plot(list_of_model_ni[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
list_of_model_si[(22 > list_of_depths) & (list_of_depths >= 15)
& (list_of_lons < -123.5) & (list_of_lats < 48.6)],
'.', color = 'CornflowerBlue', alpha = 0.5, label = 'Juan de Fuca intermediate')
ax[1].plot(list_of_model_ni[(list_of_depths >= 22) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
list_of_model_si[(list_of_depths >= 22) & (list_of_lons < -123.5)
& (list_of_lats < 48.6)],
'.', color = 'DarkOrchid', alpha = 0.5, label = 'Juan de Fuca deep')
ax[1].plot(np.unique(list_of_model_ni),
np.poly1d(np.polyfit(list_of_model_ni,
list_of_model_si, 1))(np.unique(list_of_model_ni)))
x = np.arange(0,40)
ax[1].plot(x, 2*x, 'g-', alpha = 0.3, label = 'slope = 2')
ax[1].plot(x, 2*x+30, 'y-', alpha = 0.3, label = '2*N + 30')
ax[0].set_title('DFO', fontsize = 16)
ax[1].set_title('Model', fontsize = 16)
for ax in ax:
ax.grid('on')
ax.set_ylabel('Si', fontsize = 14)
ax.set_xlabel('N', fontsize = 14)
ax.set_ylim(0,95)
ax.set_xlim(0,37)
plt.legend();
fig, ax = plt.subplots(1,2, figsize = (16,8))
ax[0].plot(list_of_cs_ni, list_of_cs_si,
'.', color = 'darkblue', alpha = 0.5)
x = np.arange(0,40)
ax[0].plot(x, 2*x, 'g-', alpha = 0.3)
ax[0].plot(x, 2*x+30, 'y-', alpha = 0.3)
ax[1].plot(list_of_model_ni, list_of_model_si,
'.', color = 'Crimson', alpha = 0.5)
x = np.arange(0,40)
ax[1].plot(x, 2*x, 'g-', alpha = 0.3, label = 'slope = 2')
ax[1].plot(x, 2*x+30, 'y-', alpha = 0.3, label = '2*N + 30')
ax[0].set_title('DFO', fontsize = 16)
ax[1].set_title('Model', fontsize = 16)
for ax in ax:
ax.grid('on')
ax.set_ylabel('Si', fontsize = 14)
ax.set_xlabel('N', fontsize = 14)
ax.set_ylim(0,95)
ax.set_xlim(0,37)
plt.legend();
fig,ax=plt.subplots(1,4,figsize=(24,6))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,4,1))
ax[0].plot(list_of_cs_si[ii], list_of_model_si[ii],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[0].set_title('Feb-Mar')
print('Feb-Mar')
print('bias = ' + str(-np.mean(list_of_cs_si[ii]) + np.mean(list_of_model_si[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
len(list_of_cs_si[ii]))))
xbar = np.mean(list_of_cs_si[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
np.sum((np.abs(list_of_model_si[ii] - xbar)
+ np.abs(list_of_cs_si[ii] - xbar))**2))))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,5,1))&(list_of_datetimes>dt.datetime(2015,4,1))
ax[1].plot(list_of_cs_si[ii], list_of_model_si[ii],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[1].set_title('April')
print('April')
print('bias = ' + str(-np.mean(list_of_cs_si[ii]) + np.mean(list_of_model_si[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
len(list_of_cs_si[ii]))))
xbar = np.mean(list_of_cs_si[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
np.sum((np.abs(list_of_model_si[ii] - xbar)
+ np.abs(list_of_cs_si[ii] - xbar))**2))))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,9,1))&(list_of_datetimes>dt.datetime(2015,5,1))
ax[2].plot(list_of_cs_si[ii], list_of_model_si[ii],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[2].set_title('May-Jun-Jul')
print('May-Jun-Jul')
print('bias = ' + str(-np.mean(list_of_cs_si[ii]) + np.mean(list_of_model_si[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
len(list_of_cs_si[ii]))))
xbar = np.mean(list_of_cs_si[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
np.sum((np.abs(list_of_model_si[ii] - xbar)
+ np.abs(list_of_cs_si[ii] - xbar))**2))))
ii=(list_of_depths < 15)&(list_of_datetimes<=dt.datetime(2015,12,1))&(list_of_datetimes>dt.datetime(2015,9,1))
ax[3].plot(list_of_cs_si[ii], list_of_model_si[ii],
'.', color = 'Crimson', alpha = 0.5, label = 'surface')
ax[3].set_title('Sep-Oct')
print('Sep-Oct')
print('bias = ' + str(-np.mean(list_of_cs_si[ii]) + np.mean(list_of_model_si[ii])))
print('RMSE = ' + str(np.sqrt(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
len(list_of_cs_si[ii]))))
xbar = np.mean(list_of_cs_si[ii])
print('Willmott = ' + str(1-(np.sum((list_of_model_si[ii] - list_of_cs_si[ii])**2) /
np.sum((np.abs(list_of_model_si[ii] - xbar)
+ np.abs(list_of_cs_si[ii] - xbar))**2))))
for ii in range(0,4):
ax[ii].plot(np.arange(0,35), color = 'grey')
Feb-Mar bias = -3.67698952675 RMSE = 4.83364551087 Willmott = 0.865305840253 April bias = -11.2893262509 RMSE = 15.7476007183 Willmott = 0.618255747045 May-Jun-Jul bias = -21.7015844991 RMSE = 23.1986240114 Willmott = 0.414219946673 Sep-Oct bias = -5.75471482032 RMSE = 8.17966102442 Willmott = 0.683513297525
m1, b1 = np.polyfit(list_of_cs_ni, list_of_cs_si, 1)
print('DFO slope = ' + str(m1))
print('DFO y int = ' + str(b1))
m2, b2 = np.polyfit(list_of_model_ni, list_of_model_si, 1)
print('model slope = ' + str(m2))
print('model y int = ' + str(b2))
DFO slope = 1.35535794713 DFO y int = 12.2843009586 model slope = 1.83613473872 model y int = -4.4136851716
fig, ax = plt.subplots(1,2,figsize = (17,8))
iii=(list_of_datetimes>dt.datetime(2015,2,1))
cols=('crimson','orangered','darkorange','gold','chartreuse','green','lightseagreen','cyan',
'lightskyblue','blue','mediumslateblue','blueviolet','darkmagenta','fuchsia')
for ii in range(2,12):
iii=(list_of_datetimes>=dt.datetime(2015,ii,1))&(list_of_datetimes<dt.datetime(2015,ii+1,1))
ax[0].plot(list_of_model_ni[iii]-list_of_cs_ni[iii], list_of_depths[iii],
'.', color = cols[ii],label=str(ii))
ax[1].plot(list_of_model_si[iii]-list_of_cs_si[iii], list_of_depths[iii],
'.', color = cols[ii],label=str(ii))
for axi in (ax[0],ax[1]):
axi.legend(loc=4)
axi.set_ylim(400,0)
axi.set_ylabel('depth (m)')
ax[0].set_xlabel('model - obs N')
ax[1].set_xlabel('model - obs Si')
ax[0].set_xlim(-20,20)
ax[1].set_xlim(-40,40)
(-40, 40)