import numpy as np
import xarray as xr
import math
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import os
from salishsea_tools import metric_tools_5x5 as met
%matplotlib inline
plt.rcParams['image.cmap'] = 'jet'
plt.rc('xtick', labelsize=20)
plt.rc('ytick', labelsize=20)
# Parent directory for the results of this run
group_results_directory = '/data/jpetrie/MEOPAR/SalishSea/results/nampisrem_old_IC_june_16/' + '/'
tracer_file = 'SS5x5_1h_20150201_20150501_ptrc_T.nc'
mesh_mask_file = 'mesh_mask.nc'
individual_directories = []
param_vals = []
param_name = "nampisrem_zz_remin_d_pon"
for file in os.listdir(group_results_directory):
if os.path.isfile(group_results_directory + file + '/' + tracer_file):
last_underscore = file.rfind("_")
file_param_name = file[:last_underscore]
if file_param_name == param_name:
val = float(file[(last_underscore + 1):])
individual_directories.append(file)
param_vals.append(val)
tracer_datasets = [xr.open_dataset(group_results_directory + '/' + file +'/' + tracer_file) for file in individual_directories]
dataset_dict = dict(zip(param_vals, tracer_datasets))
plot_tracers = ['NO3', 'NH4', 'POC', 'DOC']
param_metrics = pd.DataFrame()
for param in param_vals:
for tracer in plot_tracers:
mean_tracer = met.mean_tracer_at_depth(dataset_dict[param], tracer)
param_metrics = param_metrics.append(pd.DataFrame({param_name:[param], "METRIC_NAME":['MEAN_'+tracer + "_AT_DEPTH"], "METRIC_VAL": [mean_tracer]}))
bloom_time = met.time_surface_NO3_drops_below_4(dataset_dict[param])
param_metrics = param_metrics.append(pd.DataFrame({param_name:[param], "METRIC_NAME":["BLOOM_TIME"], "METRIC_VAL": [bloom_time]}))
sns.set(font_scale = 2)
plt.rcParams['image.cmap'] = 'jet'
fg = sns.FacetGrid(data=param_metrics, col = "METRIC_NAME", sharey=False, col_wrap = 2, size = 6)
fg.set(xlim=(min(param_metrics[param_name]) - 0.1*max(param_metrics[param_name]),1.1*max(param_metrics[param_name])))
fg.map(plt.scatter, param_name, "METRIC_VAL").add_legend()
fg.set_xticklabels(rotation=-35)
fg.set_titles("{col_name}")
<seaborn.axisgrid.FacetGrid at 0x7f75484c4518>
def plot_tracer_heatmaps(dataset_dict, tracer, vmin = None, vmax = None):
plt.rcParams['image.cmap'] = 'jet'
keys = (list(dataset_dict.keys()))
keys.sort()
for param_val in keys:
z = dataset_dict[param_val].deptht.values
t= np.array([float(x) for x in dataset_dict[param_val].time_centered.values])
tz,zt=np.meshgrid((t[:] - t[0])/10**9/3600/24,z[:])
fig, ax = plt.subplots(1, 1,figsize=(10,4))
mesh=plt.pcolormesh(tz,zt,dataset_dict[param_val][tracer].values[:,:,2,2].T, vmin = vmin, vmax = vmax)
fig.colorbar(mesh)
plt.gca().invert_yaxis()
plt.title(tracer + " (" + param_name + " = " + str(param_val)+")", size = 20)
plt.xlabel("Days", size =18)
plt.ylabel("Depth", size = 18)
def plot_tracer_dif_heatmap(dataset_dict, tracer):
param_vals = list(dataset_dict.keys())
param_1 = min(param_vals)
param_2 = max(param_vals)
z = dataset_dict[param_1].deptht.values
t= np.array([float(x) for x in dataset_dict[param_1].time_centered.values])
tz,zt=np.meshgrid((t[:] - t[0])/10**9/3600/24,z[:])
fig, ax = plt.subplots(1, 1,figsize=(15,6))
mesh=plt.pcolormesh(tz,zt,dataset_dict[param_1][tracer].values[:,:,2,2].T - dataset_dict[param_2][tracer].values[:,:,2,2].T)
fig.colorbar(mesh)
plt.gca().invert_yaxis()
plt.xlabel("Days", size =18)
plt.ylabel("Depth", size = 18)
plt.title(tracer + " difference (" + param_name + "=" + str(param_1) + " - " + param_name + "=" +str(param_2)+ ")")
plot_tracer_heatmaps(dataset_dict, "PHY2", 0, 1.8)
plot_tracer_dif_heatmap(dataset_dict, "PHY2")