This notebook looks at the vertical eddy viscosity/diffusivity during a deep water renewal event in late August 2003.
Compares dwr_new_bcs with dwr_base_bcs
Both have diff/visc 1e-6/1e-5, isoneutral, winds
dwr_corrected applies a correction to the origial bcs.
%matplotlib inline
from matplotlib import pylab
import matplotlib.pyplot as plt
import netCDF4 as NC
import numpy as np
import os
from salishsea_tools import (nc_tools,viz_tools)
from salishsea_tools.nowcast import analyze
# Load the data. Path name can be changed to look at different data.
runs=['dwr_corrected','dwr_base_bcs']
base='/data/nsoontie/MEOPAR/SalishSea/results/stratification/'
sals={}; depths={}; avms={}; avds={}; Ws={};depthws={}; Us={}; Vs={}
for run in runs:
path = os.path.join(base,'{}/SalishSea_1d_20030819_20030927_grid_T.nc'.format(run))
f = NC.Dataset(path,'r');
sals[run]=f.variables['vosaline']
depths[run] = f.variables['deptht']
T_lat = f.variables['nav_lat']
T_lon = f.variables['nav_lon']
#Loading eddy viscosity/diffusivity data on the vertical grid
path = os.path.join(base,'{}/SalishSea_1d_20030819_20030927_grid_W.nc'.format(run))
f = NC.Dataset(path,'r');
avms[run]=f.variables['ve_eddy_visc']
avds[run]= f.variables['ve_eddy_diff'] #
Ws[run]=f.variables['vovecrtz']
depthws[run] = f.variables['depthw']
#Loading data on the ugrid
path = os.path.join(base,'{}/SalishSea_1d_20030819_20030927_grid_U.nc'.format(run))
f = NC.Dataset(path,'r');
Us[run]=f.variables['vozocrtx']
#Loading data on the ugrid
path = os.path.join(base,'{}/SalishSea_1d_20030819_20030927_grid_V.nc'.format(run))
f = NC.Dataset(path,'r');
Vs[run]=f.variables['vomecrty']
grid = NC.Dataset('/data/nsoontie/MEOPAR/NEMO-forcing/grid/bathy_meter_SalishSea2.nc')
bathy=grid.variables['Bathymetry']
Which case has higher eddy viscosity? Higher average? How does it change over time? Where are the max values?
maxes_diff={}; maxes_visc={}; means_diff={}; means_visc={}; inds_diff={}; inds_visc={}
for run in runs:
maxes_diff[run]=[]; maxes_visc[run]=[]; means_diff[run]=[]; means_visc[run]=[]; inds_diff[run]=[]
inds_visc[run]=[]
for t in np.arange(0,sals[run].shape[0]):
#mask
mu = avds[run][t,0:,:,:] == 0
avd_mask = np.ma.array(avds[run][t,::,:,:],mask=mu)
mu = avms[run][t,0:,:,:] == 0
avm_mask = np.ma.array(avms[run][t,::,:,:],mask=mu)
maxes_diff[run].append(np.nanmax(avd_mask))
ind =np.nanargmax(avd_mask)
inds_diff[run].append(np.unravel_index(ind, avd_mask.shape))
maxes_visc[run].append(np.nanmax(avm_mask))
ind =np.nanargmax(avm_mask)
inds_visc[run].append(np.unravel_index(ind, avm_mask.shape))
means_diff[run].append(np.nanmean(avd_mask))
means_visc[run].append(np.nanmean(avm_mask))
for run in runs:
print(run)
print(inds_diff[run])
print(inds_visc[run])
dwr_corrected [(1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (7, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119)] [(2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (3, 773, 119), (3, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 778, 122), (1, 778, 122), (1, 778, 122), (2, 773, 119), (1, 773, 119), (1, 778, 122), (1, 773, 119), (1, 773, 119), (1, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (1, 778, 122), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (6, 773, 119), (2, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119)] dwr_base_bcs [(1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (7, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119)] [(2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (3, 773, 119), (3, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 778, 122), (1, 778, 122), (1, 778, 122), (2, 773, 119), (1, 773, 119), (1, 778, 122), (1, 773, 119), (1, 773, 119), (1, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (1, 778, 122), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (2, 773, 119), (6, 773, 119), (2, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119), (2, 773, 119), (1, 773, 119), (1, 773, 119), (1, 773, 119)]
Where are the highest vertical eddy coeffcients? Notsmooth changes over time but it looks like it is always in the northern part of the domain
fig,ax=plt.subplots(1,1,figsize=(5,8))
viz_tools.plot_coastline(ax,grid)
for run in runs:
ax.plot(inds_diff[run][0][2],inds_diff[run][0][1],'o',label='diff ' + run)
ax.plot(inds_visc[run][0][2],inds_visc[run][0][1],'o',label='visc ' + run)
plt.legend(loc=0)
<matplotlib.legend.Legend at 0x7f4942bdf668>
fig,axs=plt.subplots(2,1,figsize=(10,8))
ts=np.arange(0,sals[runs[0]].shape[0])
#maxes
ax=axs[0]
run1=runs[0]
ax.plot(ts,maxes_diff[run1],'*-r',label=run1 +' diffusivity')
ax.plot(ts,maxes_visc[run1],'s-r',label=run1 +' viscosity')
run2=runs[1]
ax.plot(ts,maxes_diff[run2],'*-b',label=run2 +' diffusivity')
ax.plot(ts,maxes_visc[run2],'s-b',label=run2 +' viscosity')
ax.set_xlabel('time stamp')
ax.set_ylabel('Eddy diffusivity/Viscosity (m^2/s)')
ax.set_title('Comparison of Maximum Vertical Eddy Coefficent')
ax.legend(loc=0)
#means
ax=axs[1]
ax.plot(ts,means_diff[run1],'*-r',label=run1 +' diffusivity')
ax.plot(ts,means_visc[run1],'s-r',label=run1+' viscosity')
ax.plot(ts,means_diff[run2],'*-b',label=run2 +' diffusivity')
ax.plot(ts,means_visc[run2],'s-b',label=run2 +' viscosity')
ax.set_xlabel('time stamp')
ax.set_ylabel('Eddy diffusivity/Viscosity (m^2/s)')
ax.set_title('Comparison of Mean Vertical Eddy Coefficent')
ax.legend(loc=0)
<matplotlib.legend.Legend at 0x7f4941327048>
Plotting salinity and eddy viscosity/diffusivity along thalweg over time. Daily average outputs over 10 days.
lines = np.loadtxt('/data/nsoontie/MEOPAR/tools/bathymetry/thalweg_working.txt', delimiter=" ", unpack=False)
lines = lines.astype(int)
T_lon=T_lon[:]
T_lat=T_lat[:]
thalweg_lon = T_lon[lines[:,0],lines[:,1]]
thalweg_lat = T_lat[lines[:,0],lines[:,1]]
ds=np.arange(0,lines.shape[0],1);
vs=np.arange(34,27.5,-0.5);
XX_T={}; ZZ_T={}; XX_W={}; ZZ_W={}
for run in runs:
XX_T[run],ZZ_T[run] = np.meshgrid(ds,-depths[run][:])
XX_W[run],ZZ_W[run] = np.meshgrid(ds,-depthws[run][:])
Salinity difference along thalweg over time.
fig,axs=plt.subplots(8,5,figsize=(20,20),sharex=True,sharey=True)
smin=-.2;smax=.2
diff = sals[run1][:]-sals[run2][:]
for t,ax in zip(np.arange(40),axs.flat):
mesh=ax.pcolormesh(XX_T[run],ZZ_T[run],(diff[t,:,lines[:,0],lines[:,1]]).T,vmin=smin,vmax=smax,cmap='bwr')
CS=ax.contour(XX_T[run],ZZ_T[run],(diff[t,:,lines[:,0],lines[:,1]]).T,[-.2,-.1,-.05, .05,0.1,0.2],colors='k')
ax.clabel(CS,fontsize=9, inline=1)
ax.set_ylim(ax.get_ylim()[::-1])
ax.set_ylim([-400,0])
ax.set_title('t = ' +str(t))
plt.colorbar(mesh,ax=ax)
print(run1 + ' - ' + run2)
dwr_corrected - dwr_base_bcs
fig,axs=plt.subplots(8,5,figsize=(10,20),sharex=True,sharey=True)
smin=-1;smax=1; dep=0
for t,ax in zip(np.arange(40),axs.flat):
salP=sals[run1][t,dep,:,:];
salP1=salP
salP=sals[run2][t,dep,:,:];
mesh=ax.pcolormesh(salP1-salP,vmin=smin,vmax=smax,cmap='bwr')
viz_tools.plot_coastline(ax,grid)
ax.set_title('t = ' +str(t))
print(run1 + ' - ' + run2)
dwr_corrected - dwr_base_bcs
fig,axs=plt.subplots(8,5,figsize=(10,20),sharex=True,sharey=True)
smin=-1;smax=1; dep=26
for t,ax in zip(np.arange(40),axs.flat):
salP=sals[run1][t,dep,:,:];
salP1=salP
salP=sals[run2][t,dep,:,:];
mesh=ax.pcolormesh(salP1-salP,vmin=smin,vmax=smax,cmap='bwr')
viz_tools.plot_coastline(ax,grid)
ax.set_title('t = ' +str(t))
print(run1 + ' - ' + run2)
dwr_corrected - dwr_base_bcs
fig,axs=plt.subplots(1,2,figsize=(8,5))
smin=0;smax=34; dep=0; t=39
mesh=axs[0].pcolormesh(sals[run1][t,dep,:,:],vmin=smin,vmax=smax,cmap='jet')
cbar=plt.colorbar(mesh,ax=axs[0])
viz_tools.plot_land_mask(axs[0],grid,color='burlywood')
axs[0].set_title(run1)
mesh=axs[1].pcolormesh(sals[run2][t,dep,:,:],vmin=smin,vmax=smax,cmap='jet')
cbar=plt.colorbar(mesh,ax=axs[1])
viz_tools.plot_land_mask(axs[1],grid,color='burlywood')
axs[1].set_title(run2)
<matplotlib.text.Text at 0x7f492e711438>
def average_thalweg(depth, index1,index2, var):
#Averages the given variable along the thalweg at a depth and for indices between index1 and index2
var_thal = var[depth,lines[:,0],lines[:,1]]
#mask
mu = var_thal==0
var_thal=np.ma.array(var_thal,mask=mu)
var_average=np.nanmean(var_thal[index1:index2])
return var_average
#plot now
t1=0;t2=40;
fig,axs = plt.subplots(1,2,figsize=(15,10))
diffs = sals[run1][t1:t2,:,:,:]-sals[run2][t1:t2,:,:,:]
tm=np.arange(t1,t2)
inds1 = [0,100,0,200,450]; inds2= [450,450,200,450,600]
dep=0;
for ind1,ind2 in zip(inds1,inds2):
averages = []
for n in range(diffs.shape[0]):
averages.append(average_thalweg(dep,ind1,ind2,diffs[n,:,:,:]))
ax=axs[0]
ax.plot(tm,averages)
ax.set_xlabel('time output')
ax.set_ylabel('Surface salinity difference avergaed along thalweg in SJdF')
ax=axs[1]
viz_tools.plot_coastline(ax,grid)
ax.plot([lines[ind1,1],lines[ind2,1]],[lines[ind1,0],lines[ind2,0]],'o-')
axs[0].grid()
print(run1 + ' - ' + run2)
dwr_corrected - dwr_base_bcs
smin=28; smax=31
emin=-4; emax=2
(fig,axs)=plt.subplots(10,2,figsize=(18,25),sharey=True)
ts=np.arange(30,40,1)
vs=np.arange(31.2,30,-0.1);
r1=400; r2=1100;
for t,ax1,ax2 in zip(ts,axs[:,0],axs[:,1]):
#salinity
run=runs[0]
salP=sals[run][:]
salP=salP[t,:,lines[r1:r2,0],lines[r1:r2,1]];
mu =salP == 0; salP= np.ma.array(salP,mask=mu)
mesh=ax1.pcolormesh(XX_T[run][:,r1:r2],ZZ_T[run][:,r1:r2],salP.T,vmin=smin,vmax=smax,cmap='rainbow')
CS=ax1.contour(XX_T[run][:,r1:r2],ZZ_T[run][:,r1:r2],salP.T,vs, colors='black')
ax1.clabel(CS,fontsize=9, inline=1)
ax1.set_title('t = ' +str(t))
run=runs[1]
salP=sals[run][:]
salP=salP[t,:,lines[r1:r2,0],lines[r1:r2,1]];
mu =salP == 0; salP= np.ma.array(salP,mask=mu)
mesh=ax2.pcolormesh(XX_T[run][:,r1:r2],ZZ_T[run][:,r1:r2],salP.T,vmin=smin,vmax=smax,cmap='rainbow')
CS=ax2.contour(XX_T[run][:,r1:r2],ZZ_T[run][:,r1:r2],salP.T,vs, colors='black')
ax2.clabel(CS,fontsize=9, inline=1)
ax2.set_title('t = ' +str(t))
print('Left:', runs[0])
print('Right:', runs[1])
Left: dwr_corrected Right: dwr_base_bcs
In this case, averaging will take into account that the grid spacing changes vertically. But I am assuming that horizontal grid boxes are equal area.
def average_over_box(varis,depths,t,imin,imax,jmin,jmax,dmin,dmax):
"""Average field stored in var over a box at a time t. """
var_av={}
#iteraring over variables in varis
for key, var in varis.items():
#subdomain
sub = var[t,dmin:dmax+1,jmin:jmax+1,imin:imax+1]
sub_dep = depths[key][dmin:dmax+1]
#mask
sub=np.ma.masked_values(sub,0)
#averaing horizontally. Assuming horizontal grid boxes are equal area
sub = np.nanmean(sub,axis=2)
sub = np.nanmean(sub,axis=1)
var_av[key]=analyze.depth_average(sub,sub_dep,depth_axis=0)
return var_av
def compare_volume_average(imin,imax,jmin,jmax,dmin,dmax):
""""time series of volume averages comparison"""
#time series of average
keys=list(sals.keys())
sals_av = {keys[0]:[],keys[1]:[]}
for t in np.arange(sals[keys[1]].shape[0]):
avg=average_over_box(sals,depths,t,imin,imax,jmin,jmax,dmin,dmax)
for run, out in avg.items():
sals_av[run].append(out)
#plotting
fig,axs=plt.subplots(1,2,figsize=(10,5))
#map
ax=axs[0]
viz_tools.plot_coastline(ax,grid)
ax.plot([imin,imax],[jmin,jmin],'r-')
ax.plot([imin,imax],[jmax,jmax],'r-')
ax.plot([imin,imin],[jmin,jmax],'r-')
ax.plot([imax,imax],[jmin,jmax],'r-')
#averages
ax=axs[1]
for key, sal_plot in sals_av.items():
ax.plot(sal_plot,label=key)
ax.legend(loc=0)
ax.set_xlabel('output time')
ax.set_ylabel('Average Salinity [psu]')
ax.set_title('Depth range {0:.3} -{1:.3} m'.format(depths[key][dmin], depths[key][dmax]))
ax.grid()
ax.get_yaxis().get_major_formatter().set_useOffset(False)
diff = np.array(sals_av[keys[1]])-np.array(sals_av[keys[0]])
print ('Difference between {} and {} in [psu]'.format(keys[1], keys[0]))
print ('Max diff: {0:.2}'.format(np.max(diff)))
print ('Min diff: {0:.2}'.format(np.min(diff)))
print ('Mean diff: {0:.2}'.format(np.mean(diff)))
return fig
fig = compare_volume_average(0,200,200,500,0,23)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: 0.0069 Min diff: -0.0081 Mean diff: 0.00064
fig = compare_volume_average(0,200,200,500,24,39)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: -0.056 Min diff: -0.13 Mean diff: -0.12
fig = compare_volume_average(0,200,200,500,0,39)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: -0.045 Min diff: -0.11 Mean diff: -0.097
fig = compare_volume_average(200,310,200,360,0,23)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: -0.00023 Min diff: -0.016 Mean diff: -0.0078
fig = compare_volume_average(200,310,200,360,24,39)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: -9.7e-06 Min diff: -0.048 Mean diff: -0.028
fig = compare_volume_average(200,310,200,360,0,39)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: -6.5e-05 Min diff: -0.042 Mean diff: -0.025
fig = compare_volume_average(250,300,360,500,0,23)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: 0.00076 Min diff: -0.0051 Mean diff: -0.0018
fig = compare_volume_average(250,300,360,500,23,30)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: 6.3e-06 Min diff: -0.014 Mean diff: -0.0047
fig = compare_volume_average(250,300,360,500,30,39)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: 2.3e-05 Min diff: -0.027 Mean diff: -0.0036
fig = compare_volume_average(250,300,360,500,0,39)
Difference between dwr_base_bcs and dwr_corrected in [psu] Max diff: -2.5e-06 Min diff: -0.017 Mean diff: -0.0038