A notebook to look at the JDF boundary conditions with comparisons to WOD database and IOS data.
Observed data in this region is from 1976 to 2014.
Focus is on temperature.
import matplotlib.pyplot as plt
import seaborn as sns
import netCDF4 as nc
from salishsea_tools import viz_tools, tidetools, nc_tools
import numpy as np
import datetime
from salishsea_tools.nowcast import analyze
import comparisons
import ACTDR
import pandas as pd
%matplotlib inline
/home/nsoontie/anaconda3/envs/py2/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
#make plots pretty
sns.set_style('darkgrid')
sns.set_color_codes()
f=nc.Dataset('/data/nsoontie/MEOPAR/NEMO-forcing/grid/bathy_meter_SalishSea2.nc')
bathy=f.variables['Bathymetry'][:]
X=f.variables['nav_lon'][:]
Y=f.variables['nav_lat'][:]
data_WOD = comparisons.read_file_to_dataframe('/ocean/nsoontie/MEOPAR/WOD/CTDS7412')
In the region of interest, the above data set only covers up to 2009.
So, use Robbie's functions to load IOS and WOD data beyond 2009.
ACTDR.load_dat('JuandeFucaMouth.dat')
('> open ', 'JuandeFucaMouth.dat') > load CTD_DAT > load STANDARD_KEYS ('> close ', 'JuandeFucaMouth.dat') > complete
data_IOS = pd.DataFrame(ACTDR.CTD_DAT)
data_IOS['Datetime'] = [datetime.datetime(y,m,d) for y,m,d in zip(data_IOS.Year,data_IOS.Month,data_IOS.Day)]
data_IOS.drop('ID', axis=1, inplace=True)
to=datetime.datetime(2010,1,1)
tf=datetime.datetime(2015,12,31)
data_IOS = comparisons.isolate_time_period(data_IOS,to,tf)
data=pd.concat([data_WOD,data_IOS],ignore_index=True)
#define region and isolate
min_lon = -124.8
max_lon = -124.7
min_lat = 48.4
max_lat = 48.7
data_JDF = comparisons.isolate_region(data, min_lon, max_lon, min_lat, max_lat)
Use data with a max depth between 150m and 300m.
dmin=150
dmax=300
data_JDF = data_JDF[(data_JDF['Depth'].apply(max)>=dmin) & (data_JDF['Depth'].apply(max)<=dmax)]
bc = nc.Dataset('/data/nsoontie/MEOPAR/NEMO-forcing/open_boundaries/west/SalishSea2_Masson_DC.nc')
lat = bc.variables['nav_lat'][:]
lon = bc.variables['nav_lon'][:]
temp = bc.variables['votemper'][:]
depth = bc.variables['deptht'][:]
nc_tools.show_variables(bc)
[u'deptht', u'nav_lat', u'nav_lon', u'nbidta', u'nbjdta', u'nbrdta', u'time_counter', u'vosaline', u'votemper']
Isolate model BCs in same region and depths as observations
#Grab only data in the lat/lon area and with bathy in depth range.
inds = np.where(np.logical_and(
np.logical_and(X > min_lon, X< max_lon),
np.logical_and(Y > min_lat, Y< max_lat)))
bathy_region = bathy[inds]
X_region = X[inds]
Y_region = Y[inds]
inds_depths = np.where(np.logical_and(bathy_region>=150, bathy_region <=300))
X_depths=X_region[inds_depths]
Y_depths=Y_region[inds_depths]
inds =[]
for x,y in zip(X_depths, Y_depths):
i = np.where(np.logical_and(lon==x, lat==y))
if i[1]:
inds.append(i[1][0])
Will average in these regions over depths 150m-300m, month by month.
Plan:
def compare_average_temperature_depth(month, dmin, dmax, indices, data_obs, bcs, dmin_grad=90, dmax_grad=150):
"""Compares the average tmperature in a depth range for observations and boundary conditions in a month
month is the month for comaprison
dmin, dmax define the depth range (metres)
indices is a list of model indicest
data_obs are the observations (DataFrame)
bcs are the model bcs (netcdf)
returns data frame means with columns:
mean_obs array of mean temp in each observation cast
mean_bcs mean model temp in at each index
"""
#initialize arrays
mean_bcs=[]
mean_obs =[]
model_gradient = []
obs_gradient = []
#Model averaging
#Model variables
time = bcs.variables['time_counter']
depth = bcs.variables['deptht']
var = bcs.variables['votemper'][:]
#times convert to date time
start = datetime.datetime(2014,1,1) #arbitrary year.
dates = [ start + datetime.timedelta(days = 7*t) for t in time]
#Look up model dates in the desired month
t_inds = [];
for t,d in enumerate(dates):
if d.month == month:
t_inds.append(t)
#depth average the model
depth_inds = np.where(np.logical_and(depth[:]<=dmax,depth[:]>=dmin))
dep_range = depth[depth_inds]
for i in indices: #iterate through space index
#Check bathymetry depth and mask id depth greater than bathy
lat_loc=lat[0,i]; lon_loc=lon[0,i]
inds_loc = np.where(np.logical_and(X==lon_loc, Y==lat_loc))
masked_dep_range = np.ma.masked_greater(dep_range,bathy[inds_loc])
for t in t_inds: #iterate through time index
temp_in_drange = np.ma.array(var[t,depth_inds,0,i], mask=masked_dep_range.mask)
avg_temp = analyze.depth_average(temp_in_drange,dep_range,depth_axis=1)
mean_bcs.append(avg_temp[0])
model_gradient.append( temp_gradient(dmin_grad, dmax_grad, var[t,:,0,i], depth ))
#observation averaging
data_m = data_obs[data_obs['Month']==month]
for dep, var_obs in zip(data_m['Depth'],data_m['Temperature']):
dep=np.array(dep)
var_obs = np.array(var_obs)
depth_inds = np.where(np.logical_and(dep[:]<=dmax,dep[:]>=dmin))
dep_range = dep[depth_inds]
temp_in_drange = var_obs[depth_inds]
if (temp_in_drange !=0).any():
avg_temp = analyze.depth_average(temp_in_drange,dep_range,depth_axis=0)
mean_obs.append(avg_temp)
obs_gradient.append( temp_gradient(dmin_grad, dmax_grad, var_obs, dep ))
#add to dict frame
means={'mean_bcs': mean_bcs, 'mean_obs': mean_obs}
return means, model_gradient, obs_gradient
def temp_gradient(dmin, dmax, temp, deps):
"""Approximates a density gradient over depth range for temperatre profile"""
dep = np.array(deps)
depth_inds = np.where(np.logical_and(dep[:]<=dmax,dep[:]>=dmin))
gradient = (temp[depth_inds][-1] - temp[depth_inds][0])/(dep[depth_inds][-1] - dep[depth_inds][0])
return gradient
def create_monthly_stats():
"""Create a list of monthly means and standard deviations for the model and obs"""
monthly_means={'obs':[], 'bcs':[]}
monthly_stds = {'obs': [], 'bcs':[]}
monthly_gradient_model = {'mean':[], 'std':[] }
monthly_gradient_obs = {'mean':[], 'std':[] }
grouped=data_JDF.groupby('Month')
for m in grouped.groups.keys():
means, model_gradient, obs_gradient = compare_average_temperature_depth(m,dmin,dmax,inds,data_JDF,bc)
monthly_means['obs'].append(np.nanmean(means['mean_obs']))
monthly_stds['obs'].append(np.nanstd(means['mean_obs']))
monthly_gradient_obs['mean'].append(np.nanmean(obs_gradient))
monthly_gradient_obs['std'].append(np.nanstd(obs_gradient))
monthly_means['bcs'].append(np.nanmean(means['mean_bcs']))
monthly_stds['bcs'].append(np.nanstd(means['mean_bcs']))
monthly_gradient_model['mean'].append(np.nanmean(model_gradient))
monthly_gradient_model['std'].append(np.nanstd(model_gradient))
return monthly_means, monthly_stds, monthly_gradient_model, monthly_gradient_obs
def extend_months(monthly_means, monthly_stds,extend_ind):
"""Extends the list of months/means to see the cylcial pattern"""
# extend the lists for cyclic pattern
months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
for key in monthly_means:
monthly_means[key].extend(monthly_means[key][0:extend_ind])
monthly_stds[key].extend(monthly_stds[key][0:extend_ind])
months.extend(months[0:extend_ind])
return monthly_means, monthly_stds, months
def plot_means_errors(ax, months, monthly_means, monthly_stds):
"""plot observed and modelled monthly means with standard deviation as error bars"""
ax.errorbar(range(len(months)),monthly_means['bcs'],label='model', yerr=monthly_stds['bcs'])
ax.errorbar(range(len(months)),monthly_means['obs'],label='obs', yerr=monthly_stds['bcs'])
ax.set_ylabel('Temperature [C]')
ax.set_xticks(range(len(months)))
ax.set_xticklabels(months, rotation='vertical')
ax.legend(loc=0)
ax.set_title('Monthly means')
def plot_monthly_difference(ax, months, monthly_means):
"""Plot the difference between model and obs in each month"""
diff = np.array(monthly_means['obs'][0:12])- np.array(monthly_means['bcs'][0:12])
print(diff)
ax.plot(range(len(months[0:12])), diff)
ax.set_title('Difference between monthly mean obs and bcs')
ax.set_ylabel('Temperature difference [C]')
ax.set_xlabel('Month')
ax.set_xticks(range(len(months[0:12])))
ax.set_xticklabels(months[0:12], rotation='vertical')
print('Mean difference between obs and model', diff.mean())
print ('Max difference between obs and model', diff.max())
print ('Min difference between obs and model', diff.min())
def map_model_obs(axobs, axmodel):
"""Map the sampling points for the data and observations"""
axmodel.scatter(lon[0][inds],lat[0][inds])
axmodel.set_xlabel('Longitide')
axmodel.set_ylabel('Latitude')
viz_tools.plot_coastline(axmodel,f,coords='map')
axmodel.set_xlim([min_lon-.1,max_lon+.1])
axmodel.set_ylim([min_lat-.1,max_lat+.1])
axmodel.set_title('Model')
data_JDF.plot(x='Longitude',y='Latitude',kind='scatter', marker='o',ax=axobs)
viz_tools.plot_coastline(axobs,f,coords='map')
axobs.set_xlim([min_lon-.1,max_lon+.1])
axobs.set_ylim([min_lat-.1,max_lat+.1])
axobs.set_title('Observations')
def obs_histogram(axmonth, axyear):
"""Plot histogram of observations sampling"""
data_JDF.hist('Month',bins=np.arange(0.5,13.5),ax=axmonth)
axmonth.set_title('Distribution of observations by month')
axmonth.set_ylabel('Number of casts')
data_JDF.hist('Year', ax=axyear)
axyear.get_xaxis().get_major_formatter().set_useOffset(False)
axyear.set_title('Distribution of observations by year')
axyear.set_ylabel('Number of casts')
print ('Max year of observations',data_JDF['Year'].max())
print ('Min year of observations',data_JDF['Year'].min())
def plot_average_monthly_gradient(monthly_gradient_model, monthly_gradient_obs, months, ax):
"""Plots the average density difference between 100 m and 150m for each monht in both the model and obs"""
ax.errorbar(range(len(months)),np.array(monthly_gradient_model['mean'])*50, label='model')
ax.errorbar(range(len(months)),np.array(monthly_gradient_obs['mean'])*50, label='obs')
ax.set_ylabel('Temperature [C]')
ax.set_xticks(range(len(months)))
ax.set_xticklabels(months, rotation='vertical')
ax.legend(loc=0)
ax.set_title('Average temperature change between 100 m and 150 m')
def compare_monthly_means():
"""Comparison plots for monthly mean deep temperature - obs and model"""
fig,axs = plt.subplots(3,2,figsize=(15,12))
print ('Summary of depth averaged temperature between {} and {} m'.format(dmin,dmax))
monthly_means, monthly_stds, monthly_gradient_model, monthly_gradient_obs = create_monthly_stats()
monthly_means, monthly_stds, months = extend_months(monthly_means, monthly_stds, 6)
#monthly means with error bars
plot_means_errors(axs[0,0], months, monthly_means, monthly_stds)
#difference between obs and model
plot_monthly_difference(axs[0,1], months, monthly_means)
#Histograms of observations - month and year
obs_histogram(axs[1,0],axs[1,1])
##plot locations
map_model_obs(axs[2,0],axs[2,1])
fig2, ax = plt.subplots(1,1,figsize=(8,4))
plot_average_monthly_gradient(monthly_gradient_model, monthly_gradient_obs, months[0:12], ax)
return fig, fig2
fig, fig2 = compare_monthly_means()
Summary of depth averaged temperature between 150 and 300 m
/home/nsoontie/anaconda3/envs/py2/lib/python2.7/site-packages/numpy/ma/core.py:4089: UserWarning: Warning: converting a masked element to nan. warnings.warn("Warning: converting a masked element to nan.")
[ 0.09095037 -0.48327957 -1.04513227 -0.98572149 -0.87906298 -0.69789556 -0.47704223 -0.34232744 0.08617487 0.06686977 0.07062807 0.31688683] ('Mean difference between obs and model', -0.35657930269703547) ('Max difference between obs and model', 0.31688682846533389) ('Min difference between obs and model', -1.045132266275564) ('Max year of observations', 2014) ('Min year of observations', 1976)
Notes:
def monthly_data_distribution(month, data_obs):
data_m = data_obs[data_obs['Month']==month]
lons = [];
lats=[]
years = []
for dep, var_obs, year, lat, lon in zip(data_m['Depth'],data_m['Temperature'],
data_m['Year'], data_m['Latitude'], data_m['Longitude']):
dep=np.array(dep)
var_obs = np.array(var_obs)
depth_inds = np.where(np.logical_and(dep[:]<=dmax,dep[:]>=dmin))
dep_range = dep[depth_inds]
temp_in_drange = var_obs[depth_inds]
if (temp_in_drange !=0).any():
years.append(year)
lats.append(lat)
lons.append(lon)
fig, axs = plt.subplots(1,2,figsize=(10,3))
ax=axs[0]
ax.scatter(lons,lats)
viz_tools.plot_coastline(ax,f,coords='map')
ax.set_xlim([min_lon-.1,max_lon+.1])
ax.set_ylim([min_lat-.1,max_lat+.1])
ax.set_title('Casts in month {}'.format(month))
ax=axs[1]
ax.hist(years)
ax.set_xlabel('year')
ax.set_ylabel('Number of casts')
ax.set_title('Distribution of casts by year')
return fig
grouped = data_JDF.groupby('Month')
for m in grouped.groups.keys():
fig = monthly_data_distribution(m, data_JDF)