In [1]:
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
import netCDF4 as nc
import datetime as dt
from salishsea_tools import evaltools as et, viz_tools
import gsw
import matplotlib.gridspec as gridspec
import matplotlib as mpl
import matplotlib.dates as mdates
import cmocean as cmo
import scipy.interpolate as sinterp
import pickle
import cmocean
import json
import f90nml
from collections import OrderedDict

fs=16
mpl.rc('xtick', labelsize=fs)
mpl.rc('ytick', labelsize=fs)
mpl.rc('legend', fontsize=fs)
mpl.rc('axes', titlesize=fs)
mpl.rc('axes', labelsize=fs)
mpl.rc('figure', titlesize=fs)
mpl.rc('font', size=fs)
mpl.rc('text', usetex=True)
mpl.rc('text.latex', preamble = r'''
 \usepackage{txfonts}
 \usepackage{lmodern}
 ''')
mpl.rc('font', family='sans-serif', weight='normal', style='normal')

import warnings
warnings.filterwarnings('ignore')
from IPython.display import Markdown, display

%matplotlib inline
In [2]:
from IPython.display import HTML

HTML('''<script>
code_show=true; 
function code_toggle() {
 if (code_show){
 $('div.input').hide();
 } else {
 $('div.input').show();
 }
 code_show = !code_show
} 
$( document ).ready(code_toggle);
</script>

<form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''')
Out[2]:
In [3]:
PATH= '/results2/SalishSea/nowcast-green.201905/'
year=2007
In [4]:
# Parameters
year = 2007
In [5]:
display(Markdown('''# Year: '''+ str(year)))

Year: 2007

Yearly model-data comparisons of nutrients, chlorophyll, temperature and salinity between 201905 runs and DFO observations

Define date range and load observations

In [6]:
start_date = dt.datetime(year,1,1)
end_date = dt.datetime(year,12,31)
flen=1
namfmt='nowcast'
filemap={'nitrate':'ptrc_T','silicon':'ptrc_T','ammonium':'ptrc_T','diatoms':'ptrc_T',
         'ciliates':'ptrc_T','flagellates':'ptrc_T','vosaline':'grid_T','votemper':'grid_T'}
fdict={'ptrc_T':1,'grid_T':1}

df1=et.loadDFO(datelims=(start_date,end_date))
print(len(df1),'data points')
df1[['Year','Month','Day','Lat','Lon','Pressure','Depth','N','Si','Chlorophyll_Extracted',
     'ConsT','AbsSal']].head()
1266 data points
Out[6]:
Year Month Day Lat Lon Pressure Depth N Si Chlorophyll_Extracted ConsT AbsSal
0 2007.0 8.0 29.0 51.678000 -127.333333 5.1 None 17.0 23.0 7.03 9.528417 29.046929
1 2007.0 8.0 29.0 51.675667 -127.293000 5.5 None 17.9 23.8 6.60 9.624807 29.041717
2 2007.0 2.0 21.0 51.678833 -127.332500 5.3 None 18.5 40.2 0.81 7.098558 25.789058
3 2007.0 2.0 21.0 51.675167 -127.284667 5.2 None 18.8 40.4 0.81 6.748061 25.660055
4 2007.0 3.0 28.0 50.655333 -126.183000 2.1 None 23.1 49.0 NaN 7.240257 28.188000
In [7]:
data=et.matchData(df1,filemap,fdict,start_date,end_date,'nowcast',PATH,1,quiet=True);
In [8]:
# density calculations:
data['rho']=gsw.rho(data['AbsSal'],data['ConsT'],data['Pressure'])
data['mod_rho']=gsw.rho(data['mod_vosaline'],data['mod_votemper'],
                        gsw.p_from_z(-1*data['Z'],data['Lat']))
In [9]:
# load chl to N ratio from namelist
nml=f90nml.read(os.path.join(PATH,'01jan'+str(year)[-2:],'namelist_smelt_cfg'))
mod_chl_N=nml['nampisopt']['zzn2chl']
print('Parameter values from 01jan'+str(year)[-2:]+' namelist_smelt_cfg:')
print('   Chl:N = ',mod_chl_N)
print('   zz_bfsi = ',nml['nampisrem']['zz_bfsi'])
print('   zz_remin_d_bsi = ',nml['nampisrem']['zz_remin_d_bsi'])
print('   zz_w_sink_d_bsi = ',nml['nampissink']['zz_w_sink_d_bsi'])
print('   zz_alpha_b_si = ',nml['nampissink']['zz_alpha_b_si'])
print('   zz_alpha_b_d = ',nml['nampissink']['zz_alpha_b_d'])
Parameter values from 01jan07 namelist_smelt_cfg:
   Chl:N =  2.0
   zz_bfsi =  6e-05
   zz_remin_d_bsi =  1.1e-06
   zz_w_sink_d_bsi =  0.00028
   zz_alpha_b_si =  0.88
   zz_alpha_b_d =  0.0
In [10]:
# chlorophyll calculations
data['l10_obsChl']=np.log10(data['Chlorophyll_Extracted']+0.01)
data['l10_modChl']=np.log10(mod_chl_N*(data['mod_diatoms']+data['mod_ciliates']+data['mod_flagellates'])+0.01)
data['mod_Chl']=mod_chl_N*(data['mod_diatoms']+data['mod_ciliates']+data['mod_flagellates'])
data['Chl']=data['Chlorophyll_Extracted']
In [11]:
# prep and load dictionary to save stats in
if os.path.isfile('vET-HC1905-DFO-NutChlPhys-stats.json'):
    with open('vET-HC1905-DFO-NutChlPhys-stats.json', 'r') as fstat:
        statsDict = json.load(fstat);
    statsDict[year]=dict();    
else:
    statsDict={year:dict()};
In [12]:
cm1=cmocean.cm.thermal
theta=-30
lon0=-123.9
lat0=49.3
with nc.Dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/bathymetry_201702.nc') as bathy:
    bathylon=np.copy(bathy.variables['nav_lon'][:,:])
    bathylat=np.copy(bathy.variables['nav_lat'][:,:])
    bathyZ=np.copy(bathy.variables['Bathymetry'][:,:])
In [13]:
def byDepth(ax,obsvar,modvar,lims):
    ps=et.varvarPlot(ax,data,obsvar,modvar,'Z',(15,22),'z','m',('mediumseagreen','darkturquoise','navy'))
    l=ax.legend(handles=ps)
    ax.set_xlabel('Obs')
    ax.set_ylabel('Model')
    ax.plot(lims,lims,'k-',alpha=.5)
    ax.set_xlim(lims)
    ax.set_ylim(lims)
    ax.set_aspect(1)
    return ps,l

def byRegion(ax,obsvar,modvar,lims):
    ps1=et.varvarPlot(ax,dJDF,obsvar,modvar,cols=('b',),lname='SJDF')
    ps2=et.varvarPlot(ax,dSJGI,obsvar,modvar,cols=('c',),lname='SJGI')
    ps3=et.varvarPlot(ax,dSOG,obsvar,modvar,cols=('y',),lname='SOG')
    ps4=et.varvarPlot(ax,dNSOG,obsvar,modvar,cols=('m',),lname='NSOG')
    l=ax.legend(handles=[ps1[0][0],ps2[0][0],ps3[0][0],ps4[0][0]])
    ax.set_xlabel('Obs')
    ax.set_ylabel('Model')
    ax.plot(lims,lims,'k-',alpha=.5)
    ax.set_xlim(lims)
    ax.set_ylim(lims)
    ax.set_aspect(1)
    return (ps1,ps2,ps3,ps4),l

def bySeason(ax,obsvar,modvar,lims):
    for axi in ax:
        axi.plot(lims,lims,'k-')
        axi.set_xlim(lims)
        axi.set_ylim(lims)
        axi.set_aspect(1)
        axi.set_xlabel('Obs')
        axi.set_ylabel('Model')
    ps=et.varvarPlot(ax[0],JFM,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[0].set_title('Jan-Mar')
    ps=et.varvarPlot(ax[1],Apr,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[1].set_title('Apr')
    ps=et.varvarPlot(ax[2],MJJA,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[2].set_title('May-Aug')
    ps=et.varvarPlot(ax[3],SOND,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[3].set_title('Sep-Dec')
    return 

def ErrErr(fig,ax,obsvar1,modvar1,obsvar2,modvar2,lims1,lims2):
    m=ax.scatter(data[modvar1]-data[obsvar1],data[modvar2]-data[obsvar2],c=data['Z'],s=1,cmap='gnuplot')
    cb=fig.colorbar(m,ax=ax,label='Depth (m)')
    ax.set_xlim(lims1)
    ax.set_ylim(lims2)
    ax.set_aspect((lims1[1]-lims1[0])/(lims2[1]-lims2[0]))
    return m,cb
In [14]:
fig, ax = plt.subplots(1,2,figsize = (13,6))
viz_tools.set_aspect(ax[0], coords = 'map')
ax[0].plot(data['Lon'], data['Lat'], 'ro',label='data')
ax[0].plot(data.loc[data.Si>75,['Lon']],data.loc[data.Si>75,['Lat']],'*',color='y',label='high Si')
grid = nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/bathymetry_201702.nc')
viz_tools.plot_coastline(ax[0], grid, coords = 'map',isobath=.1)
ax[0].set_ylim(48, 50.5)
ax[0].legend()
ax[0].set_xlim(-125.7, -122.5);
ax[0].set_title('Observation Locations');

viz_tools.set_aspect(ax[1], coords = 'map')
#ax[1].plot(data['Lon'], data['Lat'], 'ro',label='data')
dJDF=data.loc[(data.Lon<-123.6)&(data.Lat<48.6)]
ax[1].plot(dJDF['Lon'],dJDF['Lat'],'b.',label='JDF')
dSJGI=data.loc[(data.Lon>=-123.6)&(data.Lat<48.9)]
ax[1].plot(dSJGI['Lon'],dSJGI['Lat'],'c.',label='SJGI')
dSOG=data.loc[(data.Lat>=48.9)&(data.Lon>-124.0)]
ax[1].plot(dSOG['Lon'],dSOG['Lat'],'y.',label='SOG')
dNSOG=data.loc[(data.Lat>=48.9)&(data.Lon<=-124.0)]
ax[1].plot(dNSOG['Lon'],dNSOG['Lat'],'m.',label='NSOG')
grid = nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/bathymetry_201702.nc')
viz_tools.plot_coastline(ax[1], grid, coords = 'map')
ax[1].set_ylim(48, 50.5)
ax[1].legend()
ax[1].set_xlim(-125.7, -122.5);

# Also set up seasonal groupings:
iz=(data.Z<15)
JFM=data.loc[iz&(data.dtUTC<=dt.datetime(year,4,1)),:]
Apr=data.loc[iz&(data.dtUTC<=dt.datetime(year,5,1))&(data.dtUTC>dt.datetime(year,4,1)),:]
MJJA=data.loc[iz&(data.dtUTC<=dt.datetime(year,9,1))&(data.dtUTC>dt.datetime(year,5,1)),:]
SOND=data.loc[iz&(data.dtUTC>dt.datetime(year,9,1)),:]
In [15]:
statsubs=OrderedDict({'z < 15 m':data.loc[data.Z<15],
                      '15 m < z < 22 m':data.loc[(data.Z>=15)&(data.Z<22)],
                      'z >= 22 m':data.loc[data.Z>=22],
                      'z > 50 m':data.loc[data.Z>50],
                      'all':data,
                      'z < 15 m, JFM':JFM,
                      'z < 15 m, Apr':Apr,
                      'z < 15 m, MJJA':MJJA,
                      'z < 15 m, SOND': SOND})

Nitrate

In [16]:
obsvar='N'
modvar='mod_nitrate'
statsDict[year]['NO3']=OrderedDict()
for isub in statsubs:
    statsDict[year]['NO3'][isub]=dict()
    var=statsDict[year]['NO3'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])
tbl,tdf=et.displayStats(statsDict[year]['NO3'],level='Subset',suborder=list(statsubs.keys()))
tbl
Out[16]:
Bias N RMSE WSS
Subset
0 z < 15 m -0.845001 230 4.8863 0.887092
1 15 m < z < 22 m -0.287201 72 3.71001 0.558504
2 z >= 22 m -0.682046 758 2.95439 0.744281
3 z > 50 m -0.689607 589 2.7814 0.711584
4 all -0.690585 1060 3.51528 0.894704
5 z < 15 m, JFM -0.119254 3 2.54268 0
6 z < 15 m, Apr 2.68279 60 5.13338 0.530026
7 z < 15 m, MJJA -2.1997 59 5.3411 0.873868
8 z < 15 m, SOND -2.08498 108 4.5214 0.789183
In [17]:
fig, ax = plt.subplots(1,2,figsize = (16,7))
ps,l=byDepth(ax[0],obsvar,modvar,(0,40))
ax[0].set_title('NO$_3$ ($\mu$M) By Depth')

ps,l=byRegion(ax[1],obsvar,modvar,(0,40))
ax[1].set_title('NO$_3$ ($\mu$M) By Region');
In [18]:
fig, ax = plt.subplots(1,4,figsize = (16,3.3))
bySeason(ax,obsvar,modvar,(0,30))
fig,ax=plt.subplots(1,1,figsize=(20,.3))
ax.plot(data.dtUTC,np.ones(np.shape(data.dtUTC)),'k.')
ax.set_xlim((dt.datetime(year,1,1),dt.datetime(year,12,31)))
ax.set_title('Data Timing')
ax.yaxis.set_visible(False)
In [19]:
fig,ax=plt.subplots(1,2,figsize=(12,4))
ax[0].set_xlabel('Density Error (kg m$^{-3}$)')
ax[0].set_ylabel('NO$_3$ ($\mu$M) Error')
m,cb=ErrErr(fig,ax[0],'rho','mod_rho',obsvar,modvar,(-3,3),(-15,15))
ax[1].set_xlabel('Salinity Error (g kg$^{-1}$)')
ax[1].set_ylabel('NO$_3$ ($\mu$M) Error')
m,cb=ErrErr(fig,ax[1],'AbsSal','mod_vosaline',obsvar,modvar,(-2.5,2.5),(-15,15))

Dissolved Silica

In [20]:
obsvar='Si'
modvar='mod_silicon'
statsDict[year]['dSi']=OrderedDict()
for isub in statsubs:
    statsDict[year]['dSi'][isub]=dict()
    var=statsDict[year]['dSi'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])
tbl,tdf=et.displayStats(statsDict[year]['dSi'],level='Subset',suborder=list(statsubs.keys()))
tbl
Out[20]:
Bias N RMSE WSS
Subset
0 z < 15 m -7.60506 230 14.4057 0.693065
1 15 m < z < 22 m -5.77137 72 10.4514 0.483425
2 z >= 22 m -5.54415 758 8.32201 0.725874
3 z > 50 m -5.48 589 8.0562 0.731126
4 all -6.00676 1060 10.0982 0.765622
5 z < 15 m, JFM -1.26711 3 2.17827 0.374251
6 z < 15 m, Apr 5.89464 60 11.7713 0.277451
7 z < 15 m, MJJA -14.5246 59 17.9863 0.621507
8 z < 15 m, SOND -11.5008 108 13.7153 0.514492
In [21]:
mv=(0,80)
fig, ax = plt.subplots(1,2,figsize = (16,7))
ps,l=byDepth(ax[0],obsvar,modvar,mv)
ax[0].set_title('Dissolved Silica ($\mu$M) By Depth')

ps,l=byRegion(ax[1],obsvar,modvar,mv)
ax[1].set_title('Dissolved Silica ($\mu$M) By Region');
In [22]:
fig, ax = plt.subplots(1,4,figsize = (16,3.3))
bySeason(ax,obsvar,modvar,mv)
fig,ax=plt.subplots(1,1,figsize=(20,.3))
ax.plot(data.dtUTC,np.ones(np.shape(data.dtUTC)),'k.')
ax.set_xlim((dt.datetime(year,1,1),dt.datetime(year,12,31)))
ax.set_title('Data Timing')
ax.yaxis.set_visible(False)
In [23]:
fig,ax=plt.subplots(1,2,figsize=(12,4))
ax[0].set_xlabel('Density Error (kg m$^{-3}$)')
ax[0].set_ylabel('dSi Error ($\mu$M)')
m,cb=ErrErr(fig,ax[0],'rho','mod_rho',obsvar,modvar,(-3,3),(-25,25))
ax[1].set_xlabel('Salinity Error (g kg$^{-1}$)')
ax[1].set_ylabel('dSi Error ($\mu$M)')
m,cb=ErrErr(fig,ax[1],'AbsSal','mod_vosaline',obsvar,modvar,(-2.5,2.5),(-25,25))

Profiles of NO3 and Dissolved Silica

In [24]:
fig, ax = plt.subplots(1,2,figsize = (15,8))
cols=('crimson','red','orangered','darkorange','gold','chartreuse','green','lightseagreen','cyan',
      'darkturquoise','royalblue','lightskyblue','blue','darkblue','mediumslateblue','blueviolet',
      'darkmagenta','fuchsia','deeppink','pink')
ii0=start_date
for ii in range(0,int((end_date-start_date).days/30)):
    iii=(data.dtUTC>=(start_date+dt.timedelta(days=ii*30)))&(data.dtUTC<(start_date+dt.timedelta(days=(ii+1)*30)))
    ax[0].plot(data.loc[iii,['mod_nitrate']].values-data.loc[iii,['N']].values, data.loc[iii,['Z']].values, 
        '.', color = cols[ii],label=str(ii))
    ax[1].plot(data.loc[iii,['mod_silicon']].values-data.loc[iii,['Si']].values, data.loc[iii,['Z']].values, 
        '.', color = cols[ii],label=str(ii))
for axi in (ax[0],ax[1]):
    axi.legend(loc=4)
    axi.set_ylim(400,0)
    axi.set_ylabel('Depth (m)')
ax[0].set_xlabel('Model - Obs')
ax[1].set_xlabel('Model - Obs')
ax[0].set_xlim(-15,15)
ax[1].set_xlim(-40,20)
ax[0].set_title('NO3')
ax[1].set_title('dSi')
Out[24]:
Text(0.5, 1.0, 'dSi')

dSi:NO3 Ratios

In [25]:
fig,ax=plt.subplots(1,2,figsize=(15,6))
p1=ax[0].plot(dJDF['N'],dJDF['Si'],'b.',label='SJDF')
p2=ax[0].plot(dSJGI['N'],dSJGI['Si'],'c.',label='SJGI')
p3=ax[0].plot(dSOG['N'],dSOG['Si'],'y.',label='SOG')
p4=ax[0].plot(dNSOG['N'],dNSOG['Si'],'m.',label='NSOG')
ax[0].plot(np.arange(0,41),1.35*np.arange(0,41)+6.46,'k-',label='OBC')
ax[0].set_title('Observed')
ax[0].set_xlabel('NO3')
ax[0].set_ylabel('dSi')
ax[0].set_xlim(0,40)
ax[0].set_ylim(0,85)
ax[0].legend()

p5=ax[1].plot(dJDF['mod_nitrate'],dJDF['mod_silicon'],'b.',label='SJDF')
p6=ax[1].plot(dSJGI['mod_nitrate'],dSJGI['mod_silicon'],'c.',label='SJGI')
p7=ax[1].plot(dSOG['mod_nitrate'],dSOG['mod_silicon'],'y.',label='SOG')
p8=ax[1].plot(dNSOG['mod_nitrate'],dNSOG['mod_silicon'],'m.',label='NSOG')
ax[1].plot(np.arange(0,41),1.35*np.arange(0,41)+6.46,'k-',label='OBC')
ax[1].set_title('Model')
ax[1].set_xlabel('NO3')
ax[1].set_ylabel('dSi')
ax[1].set_xlim(0,40)
ax[1].set_ylim(0,85)
ax[1].legend()
#ax[0].plot(np.arange(0,35),1.3*np.arange(0,35),'k-')
#ax[1].plot(np.arange(0,35),1.3*np.arange(0,35),'k-')
Out[25]:
<matplotlib.legend.Legend at 0x7f2ffc541a00>
In [26]:
fig,ax=plt.subplots(1,2,figsize=(15,6))
p1=ax[0].plot(dJDF['AbsSal'], dJDF['Si']-1.3*dJDF['N'],'b.',label='SJDF')
p2=ax[0].plot(dSJGI['AbsSal'],dSJGI['Si']-1.3*dSJGI['N'],'c.',label='SJGI')
p3=ax[0].plot(dSOG['AbsSal'],dSOG['Si']-1.3*dSOG['N'],'y.',label='SOG')
p4=ax[0].plot(dNSOG['AbsSal'],dNSOG['Si']-1.3*dNSOG['N'],'m.',label='NSOG')
ax[0].set_title('Observed')
ax[0].set_xlabel('S (g/kg)')
ax[0].set_ylabel('dSi-1.3NO3')
ax[0].set_xlim(10,35)
ax[0].set_ylim(0,45)
ax[0].legend()

p5=ax[1].plot(dJDF['mod_vosaline'],dJDF['mod_silicon']-1.3*dJDF['mod_nitrate'],'b.',label='SJDF')
p6=ax[1].plot(dSJGI['mod_vosaline'],dSJGI['mod_silicon']-1.3*dSJGI['mod_nitrate'],'c.',label='SJGI')
p7=ax[1].plot(dSOG['mod_vosaline'],dSOG['mod_silicon']-1.3*dSOG['mod_nitrate'],'y.',label='SOG')
p8=ax[1].plot(dNSOG['mod_vosaline'],dNSOG['mod_silicon']-1.3*dNSOG['mod_nitrate'],'m.',label='NSOG')
ax[1].set_title('Model')
ax[1].set_xlabel('S (g/kg)')
ax[1].set_ylabel('dSi-1.3NO3')
ax[1].set_xlim(10,35)
ax[1].set_ylim(0,45)
ax[1].legend()
Out[26]:
<matplotlib.legend.Legend at 0x7f3020257130>

Chlorophyll

In [27]:
obsvar='l10_obsChl'
modvar='l10_modChl'
statsDict[year]['Chl log10']=OrderedDict()
for isub in statsubs:
    statsDict[year]['Chl log10'][isub]=dict()
    var=statsDict[year]['Chl log10'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])
obsvar='Chlorophyll_Extracted'
modvar='mod_Chl'
statsDict[year]['Chl']=OrderedDict()
for isub in statsubs:
    statsDict[year]['Chl'][isub]=dict()
    var=statsDict[year]['Chl'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])

tempD={'Chl log10':statsDict[year]['Chl log10'],'Chl':statsDict[year]['Chl']}
tbl,tdf=et.displayStatsFlex(tempD,('Variable','Subset','Metric',''),
                        ['Order','Subset','Metric'],
                        ['Variable','Metric'],
                        suborder=list(statsubs.keys()))
tbl
Out[27]:
Variable Chl Chl log10
Bias N RMSE WSS Bias N RMSE WSS
Subset
0 z < 15 m -1.09113 164 3.54545 0.489677 -0.189204 164 0.446323 0.73195
1 15 m < z < 22 m -0.471902 58 1.07406 0.670933 -0.164835 58 0.363038 0.628456
2 z >= 22 m -0.0490161 27 0.489433 0.324892 0.0152399 27 0.393419 0.469347
3 z > 50 m 0.0818484 4 0.0858041 0.379112 0.206992 4 0.212853 0.41876
4 all -0.833894 249 2.92812 0.520093 -0.16136 249 0.422712 0.74179
5 z < 15 m, JFM -5.56901 3 5.77952 0.295425 -0.874356 3 0.890711 0.160394
6 z < 15 m, Apr -2.6436 47 5.98685 0.394372 -0.234814 47 0.395813 0.648459
7 z < 15 m, MJJA 0.0180185 40 2.17551 0.622982 0.00370198 40 0.275985 0.582558
8 z < 15 m, SOND -0.523109 74 1.08681 0.467974 -0.236734 74 0.518303 0.431156
In [28]:
fig, ax = plt.subplots(1,2,figsize = (14,6))
ax[0].plot(np.arange(-.6,1.6,.1),np.arange(-.6,1.6,.1),'k-')
ps=et.varvarPlot(ax[0],data,'l10_obsChl','l10_modChl','Z',(5,10,15,20,25),'z','m',('crimson','darkorange','lime','mediumseagreen','darkturquoise','navy'))
ax[0].legend(handles=ps)
ax[0].set_xlabel('Obs')
ax[0].set_ylabel('Model')
ax[0].set_title('log10[Chl ($\mu$g/L)+0.01] By Depth')
ax[1].plot(np.arange(0,35),np.arange(0,35),'k-')
ps=et.varvarPlot(ax[1],data,'Chlorophyll_Extracted','mod_Chl','Z',(5,10,15,20,25),'z','m',('crimson','darkorange','lime','mediumseagreen','darkturquoise','navy'))
ax[1].legend(handles=ps)
ax[1].set_xlabel('Obs')
ax[1].set_ylabel('Model')
ax[1].set_title('Chl ($\mu$g/L) By Depth');
In [29]:
fig, ax = plt.subplots(1,2,figsize = (14,6))
obsvar='l10_obsChl'; modvar='l10_modChl'
ps,l=byRegion(ax[0],obsvar,modvar,(-.6,1.6))
ax[0].set_title('Log10 Chl ($\mu$g/L) By Region');

obsvar='Chlorophyll_Extracted'; modvar='mod_Chl'
ps,l=byRegion(ax[1],obsvar,modvar,(0,30))
ax[1].set_title('Chl ($\mu$g/L) By Region');

Conservative Temperature

In [30]:
obsvar='ConsT'
modvar='mod_votemper'
statsDict[year]['Temperature']=OrderedDict()
for isub in statsubs:
    statsDict[year]['Temperature'][isub]=dict()
    var=statsDict[year]['Temperature'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])
tbl,tdf=et.displayStats(statsDict[year]['Temperature'],level='Subset',suborder=list(statsubs.keys()))
tbl
Out[30]:
Bias N RMSE WSS
Subset
0 z < 15 m -0.0926801 236 0.706706 0.968923
1 15 m < z < 22 m -0.151182 74 0.477925 0.927271
2 z >= 22 m -0.146105 793 0.353202 0.94665
3 z > 50 m -0.122045 619 0.315127 0.958586
4 all -0.135015 1103 0.460298 0.964884
5 z < 15 m, JFM -0.447043 3 0.675534 0.0961237
6 z < 15 m, Apr -0.142572 61 0.196061 0.619533
7 z < 15 m, MJJA 0.010624 60 1.11232 0.936198
8 z < 15 m, SOND -0.111356 112 0.596994 0.952276
In [31]:
fig, ax = plt.subplots(1,2,figsize = (16,7))
ps,l=byDepth(ax[0],obsvar,modvar,(5,20))
ax[0].set_title('$\Theta$ ($^{\circ}$C) By Depth')

ps,l=byRegion(ax[1],obsvar,modvar,(5,20))
ax[1].set_title('$\Theta$ ($^{\circ}$C) By Region');
In [32]:
fig, ax = plt.subplots(1,4,figsize = (16,3.3))
bySeason(ax,obsvar,modvar,mv)
fig,ax=plt.subplots(1,1,figsize=(20,.3))
ax.plot(data.dtUTC,np.ones(np.shape(data.dtUTC)),'k.')
ax.set_xlim((dt.datetime(year,1,1),dt.datetime(year,12,31)))
ax.set_title('Data Timing')
ax.yaxis.set_visible(False)