In [1]:
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
import netCDF4 as nc
import datetime as dt
from salishsea_tools import evaltools as et, viz_tools
import gsw
import matplotlib.gridspec as gridspec
import matplotlib as mpl
import matplotlib.dates as mdates
import cmocean as cmo
import scipy.interpolate as sinterp
import pickle
import cmocean
import json
import f90nml
from collections import OrderedDict

fs=16
mpl.rc('xtick', labelsize=fs)
mpl.rc('ytick', labelsize=fs)
mpl.rc('legend', fontsize=fs)
mpl.rc('axes', titlesize=fs)
mpl.rc('axes', labelsize=fs)
mpl.rc('figure', titlesize=fs)
mpl.rc('font', size=fs)
mpl.rc('text', usetex=True)
mpl.rc('text.latex', preamble = r'''
 \usepackage{txfonts}
 \usepackage{lmodern}
 ''')
mpl.rc('font', family='sans-serif', weight='normal', style='normal')

import warnings
warnings.filterwarnings('ignore')
from IPython.display import Markdown, display

%matplotlib inline
In [2]:
from IPython.display import HTML

HTML('''<script>
code_show=true; 
function code_toggle() {
 if (code_show){
 $('div.input').hide();
 } else {
 $('div.input').show();
 }
 code_show = !code_show
} 
$( document ).ready(code_toggle);
</script>

<form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''')
Out[2]:
In [3]:
PATH= '/results2/SalishSea/nowcast-green.201905/'
year=2007
In [4]:
# Parameters
year = 2014
In [5]:
display(Markdown('''# Year: '''+ str(year)))

Year: 2014

Yearly model-data comparisons of nutrients, chlorophyll, temperature and salinity between 201905 runs and DFO observations

Define date range and load observations

In [6]:
start_date = dt.datetime(year,1,1)
end_date = dt.datetime(year,12,31)
flen=1
namfmt='nowcast'
filemap={'nitrate':'ptrc_T','silicon':'ptrc_T','ammonium':'ptrc_T','diatoms':'ptrc_T',
         'ciliates':'ptrc_T','flagellates':'ptrc_T','vosaline':'grid_T','votemper':'grid_T'}
fdict={'ptrc_T':1,'grid_T':1}

df1=et.loadDFO(datelims=(start_date,end_date))
print(len(df1),'data points')
df1[['Year','Month','Day','Lat','Lon','Pressure','Depth','N','Si','Chlorophyll_Extracted',
     'ConsT','AbsSal']].head()
1577 data points
Out[6]:
Year Month Day Lat Lon Pressure Depth N Si Chlorophyll_Extracted ConsT AbsSal
0 2014.0 2.0 11.0 48.299833 -123.9995 4.5 None 30.1 49.4 NaN 7.163426 32.134762
1 2014.0 2.0 11.0 48.299833 -123.9995 5.2 None 30.2 49.3 NaN 7.160991 32.203660
2 2014.0 2.0 11.0 48.299833 -123.9995 10.2 None 30.2 49.0 NaN 7.182615 32.260506
3 2014.0 2.0 11.0 48.299833 -123.9995 20.1 None 30.2 48.7 NaN 7.185608 32.333712
4 2014.0 2.0 11.0 48.299833 -123.9995 30.4 None 30.1 48.6 NaN 7.184490 32.340248
In [7]:
data=et.matchData(df1,filemap,fdict,start_date,end_date,'nowcast',PATH,1,quiet=True);
In [8]:
# density calculations:
data['rho']=gsw.rho(data['AbsSal'],data['ConsT'],data['Pressure'])
data['mod_rho']=gsw.rho(data['mod_vosaline'],data['mod_votemper'],
                        gsw.p_from_z(-1*data['Z'],data['Lat']))
In [9]:
# load chl to N ratio from namelist
nml=f90nml.read(os.path.join(PATH,'01jan'+str(year)[-2:],'namelist_smelt_cfg'))
mod_chl_N=nml['nampisopt']['zzn2chl']
print('Parameter values from 01jan'+str(year)[-2:]+' namelist_smelt_cfg:')
print('   Chl:N = ',mod_chl_N)
print('   zz_bfsi = ',nml['nampisrem']['zz_bfsi'])
print('   zz_remin_d_bsi = ',nml['nampisrem']['zz_remin_d_bsi'])
print('   zz_w_sink_d_bsi = ',nml['nampissink']['zz_w_sink_d_bsi'])
print('   zz_alpha_b_si = ',nml['nampissink']['zz_alpha_b_si'])
print('   zz_alpha_b_d = ',nml['nampissink']['zz_alpha_b_d'])
Parameter values from 01jan14 namelist_smelt_cfg:
   Chl:N =  2.0
   zz_bfsi =  6e-05
   zz_remin_d_bsi =  1.1e-06
   zz_w_sink_d_bsi =  0.00028
   zz_alpha_b_si =  0.88
   zz_alpha_b_d =  0.0
In [10]:
# chlorophyll calculations
data['l10_obsChl']=np.log10(data['Chlorophyll_Extracted']+0.01)
data['l10_modChl']=np.log10(mod_chl_N*(data['mod_diatoms']+data['mod_ciliates']+data['mod_flagellates'])+0.01)
data['mod_Chl']=mod_chl_N*(data['mod_diatoms']+data['mod_ciliates']+data['mod_flagellates'])
data['Chl']=data['Chlorophyll_Extracted']
In [11]:
# prep and load dictionary to save stats in
if os.path.isfile('vET-HC1905-DFO-NutChlPhys-stats.json'):
    with open('vET-HC1905-DFO-NutChlPhys-stats.json', 'r') as fstat:
        statsDict = json.load(fstat);
    statsDict[year]=dict();    
else:
    statsDict={year:dict()};
In [12]:
cm1=cmocean.cm.thermal
theta=-30
lon0=-123.9
lat0=49.3
with nc.Dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/bathymetry_201702.nc') as bathy:
    bathylon=np.copy(bathy.variables['nav_lon'][:,:])
    bathylat=np.copy(bathy.variables['nav_lat'][:,:])
    bathyZ=np.copy(bathy.variables['Bathymetry'][:,:])
In [13]:
def byDepth(ax,obsvar,modvar,lims):
    ps=et.varvarPlot(ax,data,obsvar,modvar,'Z',(15,22),'z','m',('mediumseagreen','darkturquoise','navy'))
    l=ax.legend(handles=ps)
    ax.set_xlabel('Obs')
    ax.set_ylabel('Model')
    ax.plot(lims,lims,'k-',alpha=.5)
    ax.set_xlim(lims)
    ax.set_ylim(lims)
    ax.set_aspect(1)
    return ps,l

def byRegion(ax,obsvar,modvar,lims):
    ps1=et.varvarPlot(ax,dJDF,obsvar,modvar,cols=('b',),lname='SJDF')
    ps2=et.varvarPlot(ax,dSJGI,obsvar,modvar,cols=('c',),lname='SJGI')
    ps3=et.varvarPlot(ax,dSOG,obsvar,modvar,cols=('y',),lname='SOG')
    ps4=et.varvarPlot(ax,dNSOG,obsvar,modvar,cols=('m',),lname='NSOG')
    l=ax.legend(handles=[ps1[0][0],ps2[0][0],ps3[0][0],ps4[0][0]])
    ax.set_xlabel('Obs')
    ax.set_ylabel('Model')
    ax.plot(lims,lims,'k-',alpha=.5)
    ax.set_xlim(lims)
    ax.set_ylim(lims)
    ax.set_aspect(1)
    return (ps1,ps2,ps3,ps4),l

def bySeason(ax,obsvar,modvar,lims):
    for axi in ax:
        axi.plot(lims,lims,'k-')
        axi.set_xlim(lims)
        axi.set_ylim(lims)
        axi.set_aspect(1)
        axi.set_xlabel('Obs')
        axi.set_ylabel('Model')
    ps=et.varvarPlot(ax[0],JFM,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[0].set_title('Jan-Mar')
    ps=et.varvarPlot(ax[1],Apr,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[1].set_title('Apr')
    ps=et.varvarPlot(ax[2],MJJA,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[2].set_title('May-Aug')
    ps=et.varvarPlot(ax[3],SOND,obsvar,modvar,cols=('crimson','darkturquoise','navy'))
    ax[3].set_title('Sep-Dec')
    return 

def ErrErr(fig,ax,obsvar1,modvar1,obsvar2,modvar2,lims1,lims2):
    m=ax.scatter(data[modvar1]-data[obsvar1],data[modvar2]-data[obsvar2],c=data['Z'],s=1,cmap='gnuplot')
    cb=fig.colorbar(m,ax=ax,label='Depth (m)')
    ax.set_xlim(lims1)
    ax.set_ylim(lims2)
    ax.set_aspect((lims1[1]-lims1[0])/(lims2[1]-lims2[0]))
    return m,cb
In [14]:
fig, ax = plt.subplots(1,2,figsize = (13,6))
viz_tools.set_aspect(ax[0], coords = 'map')
ax[0].plot(data['Lon'], data['Lat'], 'ro',label='data')
ax[0].plot(data.loc[data.Si>75,['Lon']],data.loc[data.Si>75,['Lat']],'*',color='y',label='high Si')
grid = nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/bathymetry_201702.nc')
viz_tools.plot_coastline(ax[0], grid, coords = 'map',isobath=.1)
ax[0].set_ylim(48, 50.5)
ax[0].legend()
ax[0].set_xlim(-125.7, -122.5);
ax[0].set_title('Observation Locations');

viz_tools.set_aspect(ax[1], coords = 'map')
#ax[1].plot(data['Lon'], data['Lat'], 'ro',label='data')
dJDF=data.loc[(data.Lon<-123.6)&(data.Lat<48.6)]
ax[1].plot(dJDF['Lon'],dJDF['Lat'],'b.',label='JDF')
dSJGI=data.loc[(data.Lon>=-123.6)&(data.Lat<48.9)]
ax[1].plot(dSJGI['Lon'],dSJGI['Lat'],'c.',label='SJGI')
dSOG=data.loc[(data.Lat>=48.9)&(data.Lon>-124.0)]
ax[1].plot(dSOG['Lon'],dSOG['Lat'],'y.',label='SOG')
dNSOG=data.loc[(data.Lat>=48.9)&(data.Lon<=-124.0)]
ax[1].plot(dNSOG['Lon'],dNSOG['Lat'],'m.',label='NSOG')
grid = nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/bathymetry_201702.nc')
viz_tools.plot_coastline(ax[1], grid, coords = 'map')
ax[1].set_ylim(48, 50.5)
ax[1].legend()
ax[1].set_xlim(-125.7, -122.5);

# Also set up seasonal groupings:
iz=(data.Z<15)
JFM=data.loc[iz&(data.dtUTC<=dt.datetime(year,4,1)),:]
Apr=data.loc[iz&(data.dtUTC<=dt.datetime(year,5,1))&(data.dtUTC>dt.datetime(year,4,1)),:]
MJJA=data.loc[iz&(data.dtUTC<=dt.datetime(year,9,1))&(data.dtUTC>dt.datetime(year,5,1)),:]
SOND=data.loc[iz&(data.dtUTC>dt.datetime(year,9,1)),:]
In [15]:
statsubs=OrderedDict({'z < 15 m':data.loc[data.Z<15],
                      '15 m < z < 22 m':data.loc[(data.Z>=15)&(data.Z<22)],
                      'z >= 22 m':data.loc[data.Z>=22],
                      'z > 50 m':data.loc[data.Z>50],
                      'all':data,
                      'z < 15 m, JFM':JFM,
                      'z < 15 m, Apr':Apr,
                      'z < 15 m, MJJA':MJJA,
                      'z < 15 m, SOND': SOND})

Nitrate

In [16]:
obsvar='N'
modvar='mod_nitrate'
statsDict[year]['NO3']=OrderedDict()
for isub in statsubs:
    statsDict[year]['NO3'][isub]=dict()
    var=statsDict[year]['NO3'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])
tbl,tdf=et.displayStats(statsDict[year]['NO3'],level='Subset',suborder=list(statsubs.keys()))
tbl
Out[16]:
Bias N RMSE WSS
Subset
0 z < 15 m -2.71079 391 6.10419 0.863714
1 15 m < z < 22 m -2.31533 89 4.24997 0.837409
2 z >= 22 m -2.92494 1013 3.64597 0.813922
3 z > 50 m -3.13506 707 3.59048 0.72917
4 all -2.83252 1493 4.45582 0.921497
5 z < 15 m, JFM -4.48265 6 4.50295 0.0638573
6 z < 15 m, Apr -5.86743 134 8.54581 0.692818
7 z < 15 m, MJJA -1.30758 123 5.1934 0.870879
8 z < 15 m, SOND -0.671543 128 3.24017 0.959008
In [17]:
fig, ax = plt.subplots(1,2,figsize = (16,7))
ps,l=byDepth(ax[0],obsvar,modvar,(0,40))
ax[0].set_title('NO$_3$ ($\mu$M) By Depth')

ps,l=byRegion(ax[1],obsvar,modvar,(0,40))
ax[1].set_title('NO$_3$ ($\mu$M) By Region');
In [18]:
fig, ax = plt.subplots(1,4,figsize = (16,3.3))
bySeason(ax,obsvar,modvar,(0,30))
fig,ax=plt.subplots(1,1,figsize=(20,.3))
ax.plot(data.dtUTC,np.ones(np.shape(data.dtUTC)),'k.')
ax.set_xlim((dt.datetime(year,1,1),dt.datetime(year,12,31)))
ax.set_title('Data Timing')
ax.yaxis.set_visible(False)
In [19]:
fig,ax=plt.subplots(1,2,figsize=(12,4))
ax[0].set_xlabel('Density Error (kg m$^{-3}$)')
ax[0].set_ylabel('NO$_3$ ($\mu$M) Error')
m,cb=ErrErr(fig,ax[0],'rho','mod_rho',obsvar,modvar,(-3,3),(-15,15))
ax[1].set_xlabel('Salinity Error (g kg$^{-1}$)')
ax[1].set_ylabel('NO$_3$ ($\mu$M) Error')
m,cb=ErrErr(fig,ax[1],'AbsSal','mod_vosaline',obsvar,modvar,(-2.5,2.5),(-15,15))

Dissolved Silica

In [20]:
obsvar='Si'
modvar='mod_silicon'
statsDict[year]['dSi']=OrderedDict()
for isub in statsubs:
    statsDict[year]['dSi'][isub]=dict()
    var=statsDict[year]['dSi'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])
tbl,tdf=et.displayStats(statsDict[year]['dSi'],level='Subset',suborder=list(statsubs.keys()))
tbl
Out[20]:
Bias N RMSE WSS
Subset
0 z < 15 m -5.26375 391 12.2093 0.714165
1 15 m < z < 22 m -5.11649 89 8.90557 0.778079
2 z >= 22 m -7.53891 1013 10.1091 0.726525
3 z > 50 m -7.48189 707 9.42922 0.739717
4 all -6.79867 1493 10.6351 0.810776
5 z < 15 m, JFM -6.04632 6 6.10112 0.475428
6 z < 15 m, Apr -9.51914 134 15.4928 0.655779
7 z < 15 m, MJJA -7.64349 123 12.8569 0.563802
8 z < 15 m, SOND 1.51457 128 6.59431 0.895011
In [21]:
mv=(0,80)
fig, ax = plt.subplots(1,2,figsize = (16,7))
ps,l=byDepth(ax[0],obsvar,modvar,mv)
ax[0].set_title('Dissolved Silica ($\mu$M) By Depth')

ps,l=byRegion(ax[1],obsvar,modvar,mv)
ax[1].set_title('Dissolved Silica ($\mu$M) By Region');
In [22]:
fig, ax = plt.subplots(1,4,figsize = (16,3.3))
bySeason(ax,obsvar,modvar,mv)
fig,ax=plt.subplots(1,1,figsize=(20,.3))
ax.plot(data.dtUTC,np.ones(np.shape(data.dtUTC)),'k.')
ax.set_xlim((dt.datetime(year,1,1),dt.datetime(year,12,31)))
ax.set_title('Data Timing')
ax.yaxis.set_visible(False)
In [23]:
fig,ax=plt.subplots(1,2,figsize=(12,4))
ax[0].set_xlabel('Density Error (kg m$^{-3}$)')
ax[0].set_ylabel('dSi Error ($\mu$M)')
m,cb=ErrErr(fig,ax[0],'rho','mod_rho',obsvar,modvar,(-3,3),(-25,25))
ax[1].set_xlabel('Salinity Error (g kg$^{-1}$)')
ax[1].set_ylabel('dSi Error ($\mu$M)')
m,cb=ErrErr(fig,ax[1],'AbsSal','mod_vosaline',obsvar,modvar,(-2.5,2.5),(-25,25))

Profiles of NO3 and Dissolved Silica

In [24]:
fig, ax = plt.subplots(1,2,figsize = (15,8))
cols=('crimson','red','orangered','darkorange','gold','chartreuse','green','lightseagreen','cyan',
      'darkturquoise','royalblue','lightskyblue','blue','darkblue','mediumslateblue','blueviolet',
      'darkmagenta','fuchsia','deeppink','pink')
ii0=start_date
for ii in range(0,int((end_date-start_date).days/30)):
    iii=(data.dtUTC>=(start_date+dt.timedelta(days=ii*30)))&(data.dtUTC<(start_date+dt.timedelta(days=(ii+1)*30)))
    ax[0].plot(data.loc[iii,['mod_nitrate']].values-data.loc[iii,['N']].values, data.loc[iii,['Z']].values, 
        '.', color = cols[ii],label=str(ii))
    ax[1].plot(data.loc[iii,['mod_silicon']].values-data.loc[iii,['Si']].values, data.loc[iii,['Z']].values, 
        '.', color = cols[ii],label=str(ii))
for axi in (ax[0],ax[1]):
    axi.legend(loc=4)
    axi.set_ylim(400,0)
    axi.set_ylabel('Depth (m)')
ax[0].set_xlabel('Model - Obs')
ax[1].set_xlabel('Model - Obs')
ax[0].set_xlim(-15,15)
ax[1].set_xlim(-40,20)
ax[0].set_title('NO3')
ax[1].set_title('dSi')
Out[24]:
Text(0.5, 1.0, 'dSi')

dSi:NO3 Ratios

In [25]:
fig,ax=plt.subplots(1,2,figsize=(15,6))
p1=ax[0].plot(dJDF['N'],dJDF['Si'],'b.',label='SJDF')
p2=ax[0].plot(dSJGI['N'],dSJGI['Si'],'c.',label='SJGI')
p3=ax[0].plot(dSOG['N'],dSOG['Si'],'y.',label='SOG')
p4=ax[0].plot(dNSOG['N'],dNSOG['Si'],'m.',label='NSOG')
ax[0].plot(np.arange(0,41),1.35*np.arange(0,41)+6.46,'k-',label='OBC')
ax[0].set_title('Observed')
ax[0].set_xlabel('NO3')
ax[0].set_ylabel('dSi')
ax[0].set_xlim(0,40)
ax[0].set_ylim(0,85)
ax[0].legend()

p5=ax[1].plot(dJDF['mod_nitrate'],dJDF['mod_silicon'],'b.',label='SJDF')
p6=ax[1].plot(dSJGI['mod_nitrate'],dSJGI['mod_silicon'],'c.',label='SJGI')
p7=ax[1].plot(dSOG['mod_nitrate'],dSOG['mod_silicon'],'y.',label='SOG')
p8=ax[1].plot(dNSOG['mod_nitrate'],dNSOG['mod_silicon'],'m.',label='NSOG')
ax[1].plot(np.arange(0,41),1.35*np.arange(0,41)+6.46,'k-',label='OBC')
ax[1].set_title('Model')
ax[1].set_xlabel('NO3')
ax[1].set_ylabel('dSi')
ax[1].set_xlim(0,40)
ax[1].set_ylim(0,85)
ax[1].legend()
#ax[0].plot(np.arange(0,35),1.3*np.arange(0,35),'k-')
#ax[1].plot(np.arange(0,35),1.3*np.arange(0,35),'k-')
Out[25]:
<matplotlib.legend.Legend at 0x7fb4d97993a0>
In [26]:
fig,ax=plt.subplots(1,2,figsize=(15,6))
p1=ax[0].plot(dJDF['AbsSal'], dJDF['Si']-1.3*dJDF['N'],'b.',label='SJDF')
p2=ax[0].plot(dSJGI['AbsSal'],dSJGI['Si']-1.3*dSJGI['N'],'c.',label='SJGI')
p3=ax[0].plot(dSOG['AbsSal'],dSOG['Si']-1.3*dSOG['N'],'y.',label='SOG')
p4=ax[0].plot(dNSOG['AbsSal'],dNSOG['Si']-1.3*dNSOG['N'],'m.',label='NSOG')
ax[0].set_title('Observed')
ax[0].set_xlabel('S (g/kg)')
ax[0].set_ylabel('dSi-1.3NO3')
ax[0].set_xlim(10,35)
ax[0].set_ylim(0,45)
ax[0].legend()

p5=ax[1].plot(dJDF['mod_vosaline'],dJDF['mod_silicon']-1.3*dJDF['mod_nitrate'],'b.',label='SJDF')
p6=ax[1].plot(dSJGI['mod_vosaline'],dSJGI['mod_silicon']-1.3*dSJGI['mod_nitrate'],'c.',label='SJGI')
p7=ax[1].plot(dSOG['mod_vosaline'],dSOG['mod_silicon']-1.3*dSOG['mod_nitrate'],'y.',label='SOG')
p8=ax[1].plot(dNSOG['mod_vosaline'],dNSOG['mod_silicon']-1.3*dNSOG['mod_nitrate'],'m.',label='NSOG')
ax[1].set_title('Model')
ax[1].set_xlabel('S (g/kg)')
ax[1].set_ylabel('dSi-1.3NO3')
ax[1].set_xlim(10,35)
ax[1].set_ylim(0,45)
ax[1].legend()
Out[26]:
<matplotlib.legend.Legend at 0x7fb4fcc67be0>

Chlorophyll

In [27]:
obsvar='l10_obsChl'
modvar='l10_modChl'
statsDict[year]['Chl log10']=OrderedDict()
for isub in statsubs:
    statsDict[year]['Chl log10'][isub]=dict()
    var=statsDict[year]['Chl log10'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])
obsvar='Chlorophyll_Extracted'
modvar='mod_Chl'
statsDict[year]['Chl']=OrderedDict()
for isub in statsubs:
    statsDict[year]['Chl'][isub]=dict()
    var=statsDict[year]['Chl'][isub]
    var['N'],mmean,omean,var['Bias'],var['RMSE'],var['WSS']=et.stats(statsubs[isub].loc[:,[obsvar]],
                                                                     statsubs[isub].loc[:,[modvar]])

tempD={'Chl log10':statsDict[year]['Chl log10'],'Chl':statsDict[year]['Chl']}
tbl,tdf=et.displayStatsFlex(tempD,('Variable','Subset','Metric',''),
                        ['Order','Subset','Metric'],
                        ['Variable','Metric'],
                        suborder=list(statsubs.keys()))
tbl
Out[27]:
Variable Chl Chl log10
Bias N RMSE WSS Bias N RMSE WSS
Subset
0 z < 15 m -1.85552 174 5.80477 0.611356 -0.164615 174 0.472819 0.777024
1 15 m < z < 22 m -0.955263 83 2.0212 0.573277 -0.21734 83 0.450473 0.657297
2 z >= 22 m 1.16183 2 1.34692 0.500949 0.376406 2 0.377427 0.689551
3 z > 50 m nan 0 nan nan nan 0 nan nan
4 all -1.54372 259 4.89492 0.633327 -0.177333 259 0.465102 0.772098
5 z < 15 m, JFM nan 0 nan nan nan 0 nan nan
6 z < 15 m, Apr -3.15057 45 7.46919 0.673556 -0.142723 45 0.529455 0.745536
7 z < 15 m, MJJA -3.19195 42 7.8846 0.371716 -0.145491 42 0.507133 0.292711
8 z < 15 m, SOND -0.540489 87 2.91939 0.604657 -0.18517 87 0.421857 0.781781
In [28]:
fig, ax = plt.subplots(1,2,figsize = (14,6))
ax[0].plot(np.arange(-.6,1.6,.1),np.arange(-.6,1.6,.1),'k-')
ps=et.varvarPlot(ax[0],data,'l10_obsChl','l10_modChl','Z',(5,10,15,20,25),'z','m',('crimson','darkorange','lime','mediumseagreen','darkturquoise','navy'))
ax[0].legend(handles=ps)
ax[0].set_xlabel('Obs')
ax[0].set_ylabel('Model')
ax[0].set_title('log10[Chl ($\mu$g/L)+0.01] By Depth')
ax[1].plot(np.arange(0,35),np.arange(0,35),'k-')
ps=et.varvarPlot(ax[1],data,'Chlorophyll_Extracted','mod_Chl','Z',(5,10,15,20,25),'z','m',('crimson','darkorange','lime','mediumseagreen','darkturquoise','navy'))
ax[1].legend(handles=ps)
ax[1].set_xlabel('Obs')
ax[1].set_ylabel('Model')
ax[1].set_title('Chl ($\mu$g/L) By Depth');
In [29]:
fig, ax = plt.subplots(1,2,figsize = (14,6))
obsvar='l10_obsChl'; modvar='l10_modChl'
ps,l=byRegion(ax[0],obsvar,modvar,(-.6,1.6))
ax[0].set_title('Log10 Chl ($\mu$g/L) By Region');

obsvar='Chlorophyll_Extracted'; modvar='mod_Chl'
ps,l=byRegion(ax[1],obsvar,modvar,(0,30))
ax[1].set_title('Chl ($\mu$g/L) By Region');