SocratesClub's
repositories
|
data
|
movielens_data
|
03_Numpy_Notebook.ipynb
|
05a_Matplotlib_Notebook.ipynb
|
05b_Exploring Indicator's Across Countries.ipynb
|
05c_Folium_Notebook.ipynb
|
A Simple Classification.ipynb
|
Ad Demand Forecast Avito.ipynb
|
Airbnb Listing Toronto.ipynb
|
Airbnb New User Bookings.ipynb
|
Airbnb New User Bookings_2.ipynb
|
Anomaly_Detection_for_Dummies.ipynb
|
Articles Rec System Implicit.ipynb
|
Autoencoder for Customer Churn.ipynb
|
BOW_TFIDF_Xgboost_update.ipynb
|
Bayesian Logistic Regression_bank marketing.ipynb
|
Bayesian Modeling Customer Support Response time.ipynb
|
Bayesian Statistics Python_PyMC3_ArviZ.ipynb
|
Bayesian price Mercari with PyStan.ipynb
|
Build Recommender System in an Hour - Part 2.ipynb
|
Building Recommender System with Surprise.ipynb
|
CLV_Hopper.ipynb
|
CLV_Non_Contractual.ipynb
|
CLV_Online_Retail.ipynb
|
Classifier Visualization.ipynb
|
Click-Through Rate Prediction.ipynb
|
Clustering Loyalty members.ipynb
|
Collaborative Filtering Model with TensorFlow.ipynb
|
Compare Vaccines Effectiveness.ipynb
|
Consumer_complaints.ipynb
|
Customer_Segmentation_Online_Retail.ipynb
|
Customer_Segmentation_Whosale.ipynb
|
Ease_of_Business.ipynb
|
Employee_Turnover.ipynb
|
European Soccer Regression Analysis using scikit-learn.ipynb
|
Evaluation.ipynb
|
Granger Causality Test.ipynb
|
H2O Higgs Boson.ipynb
|
Hotel Optimize Click-through.ipynb
|
Hotel recommendation.ipynb
|
Introduction to Data Science in Python - Soccer Data Analysis.ipynb
|
Introduction to Pandas.ipynb
|
LDA.ipynb
|
LSTM Time Series Power Consumption.ipynb
|
Logistic Regression balanced.ipynb
|
Logistic Regression in Python - Step by Step.ipynb
|
Machine Learning for Diabetes.ipynb
|
Mercari Price Suggestion Lightgbm.ipynb
|
Modeling House Price with Regularized Linear Model & Xgboost.ipynb
|
Movielens Recommender Metrics.ipynb
|
Multi label text classification.ipynb
|
Multilevel regression with post-stratification_election2020.ipynb
|
Multiple Linear Regression.ipynb
|
NYC taxi fare.ipynb
|
Natural Language Processing of Movie Reviews using nltk .ipynb
|
Outbreaks_Headlines.ipynb
|
Practical Statistics House Python_update.ipynb
|
Predict hotel booking.ipynb
|
Predict_Bay_Area_Home_Price.ipynb
|
Price Elasticity of Demand.ipynb
|
Promotional Time Series .ipynb
|
Propensity Modeling for Email Marketing Campaign.ipynb
|
PySpark_Basic_DataFrame_Operations.ipynb
|
Pysurvival.ipynb
|
Quantile Regression.ipynb
|
Recommender Systems - The Fundamentals.ipynb
|
Recursive least squares.ipynb
|
Regression Diagnostics.ipynb
|
Regression Plots.ipynb
|
SF_Crime_Text_Classification_PySpark.ipynb
|
Scikit-Survival.ipynb
|
Seattle Hotels Recommender.ipynb
|
Simple Linear Regression.ipynb
|
Softmax function.ipynb
|
Solving A Simple Classification Problem with Python.ipynb
|
Spark DataFrames Project Exercise_Udemy.ipynb
|
Supervised Learning - Part I.ipynb
|
Supervised Learning - Part II.ipynb
|
TPOT Mercedes.ipynb
|
Text Classification Keras.ipynb
|
Text Classification keras_consumer_complaints.ipynb
|
Time Series ANN & LSTM VIX.ipynb
|
Time Series Forecastings.ipynb
|
Time Series LSTM VIX.ipynb
|
Time Series of Price Anomaly Detection Expedia.ipynb
|
Timeseries anomaly detection using LSTM Autoencoder JNJ.ipynb
|
Topic Modeling.ipynb
|
Trip Segmentation by User Search Behaviors.ipynb
|
Unsupervised Learning.ipynb
|
Using the Twitter API for Tweet Analysis.ipynb
|
Weather Data Classification using Decision Trees.ipynb
|
Weather Data Clustering using k-Means.ipynb
|
Working with Databases.ipynb
|
Xgboost_bow_tfidf.ipynb
|
Zakka_Canada_CLV.ipynb
|
a_features.ipynb
|
a_tfstart.ipynb
|
b_estimator.ipynb
|
breast_cancer_predict.ipynb
|
c_batched.ipynb
|
create_datasets.ipynb
|
d_traineval.ipynb
|
machine learning spaCy.ipynb
|
mlapis.ipynb
|
nhanes_confidence_intervals.ipynb
|
nhanes_hypothesis_testing.ipynb
|
python_libraries.ipynb
|
scatter_plots.ipynb
|
stack_over_flow_auto_tagging.ipynb
|
topic_modeling_Gensim.ipynb
|
20070103-^NSEI.csv
|
HR.csv
|
README.md
|
Seattle_Hotels.csv
|
adspy_shared_utilities.py
|
beef.csv
|
data_preprocessing.py
|
dataset.csv
|
diabetes.csv
|
fruit_data_with_colors.txt
|
map.png
|
research_paper.csv
|
tpot_Mercedes_testing_time_pipeline.py
|
visuals.py
|