SocratesClub's
repositories
|
.ipynb_checkpoints
|
_build
|
2-2-认识Jupyter-Notebook.ipynb
|
2-3-Python编程基础.ipynb
|
2-4-认识numpy与pandas.ipynb
|
3-1-使用Python进行描述统计单变量.ipynb
|
3-10-列联表检验.ipynb
|
3-2-使用Python进行描述统计多变量.ipynb
|
3-3-基于matplotlib-seaborn的数据可视化.ipynb
|
3-4-用Python模拟抽样.ipynb
|
3-5-样本统计量的性质.ipynb
|
3-6-正态分布及其应用.ipynb
|
3-7-参数估计.ipynb
|
3-8-假设检验.ipynb
|
3-9-均值差的检验.ipynb
|
5-1-一元回归.ipynb
|
5-2-方差分析.ipynb
|
5-3-含有多个解释变量的模型.ipynb
|
6-1-各种概率分布.ipynb
|
6-3-logistic回归.ipynb
|
6-4-广义线性模型的评估.ipynb
|
6-5-泊松回归.ipynb
|
7-3-Python中的Ridge回归与Lasso回归.ipynb
|
7-4-线性模型与神经网络.ipynb
|
.DS_Store
|
2-4-1-sample_data.csv
|
3-10-1-click_data.csv
|
3-2-1-fish_multi.csv
|
3-2-2-shoes.csv
|
3-2-3-cov.csv
|
3-3-2-fish_multi_2.csv
|
3-4-1-fish_length_100000.csv
|
3-7-1-fish_length.csv
|
3-8-1-junk-food-weight.csv
|
3-9-1-paired-t-test.csv
|
5-1-1-beer.csv
|
5-3-1-lm-model.csv
|
6-3-1-logistic-regression.csv
|
6-5-1-poisson-regression.csv
|
7-3-1-large-data.csv
|
README.md
|
_config.yml
|
_toc.yml
|
deploy.sh
|