This notebook investigate data distributions and potential outlier metrics
We're using scipy to generate data with different distribution properties.
For this notebook we're looking at a reasonable set of data distributions and how the IQR and Stddev method compare when computing outliers on those datasets.
plot_data('normal')
plot_data('skewed')
plot_data('outliers')
plot_data('outliers_2')
plot_data('outliers_3')
plot_data('negative_binom')
plot_data('poisson')
plot_data('zip')
plot_data('gamma')
plot_data('gamma_smoosh')
plot_data('bimodal')
There's no perfect metric for outliers, it's really about the data distribution and the use cases for your organization.
Why default to IQR for outliers?
Athena/Presto has a scalable/performant way to compute approximate quartiles based on Q-Digest/T-Digest
The IQR method is less sensitive to extreme values or outliers in the data compared to the standard deviation method. Outliers can significantly skew the mean and standard deviation, leading to unreliable bounds. IQR, on the other hand, relies on medians and quartiles, making it more robust.
The IQR method does not assume that the data follows a normal distribution. In contrast, the standard deviation method's effectiveness can be compromised if the data is not normally distributed. If the underlying distribution is skewed or has heavy tails, the IQR might provide a more accurate way to identify outliers.
Here's an approach you can follow:
Prepare the Data: Clean the data and ensure there are no missing values or other issues that might interfere with the fitting process.
Choose Candidate Distributions: Select a set of candidate distributions that you believe might be suitable. Common choices might include Normal, Exponential, Poisson, Negative Binomial, etc.
Fit the Distributions: For each candidate distribution, estimate the parameters that provide the best fit to the data. You can use functions in scipy.stats for this.
Evaluate the Fit: Compare the goodness of fit for each distribution using statistical tests or information criteria like the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC).
Visual Inspection: It might also be helpful to plot the empirical data and the fitted probability density functions together to visually assess the fit.
There's also a Python module called Fitter that might be helpful
from fitter import Fitter
# Lets try two distributions
gaussian = np.random.normal(loc=0, scale=1, size=5000)
gamma_data = gamma.rvs(a=1, scale=1, size=5000)
print("Gaussian Data")
f = Fitter(gaussian, distributions="common")
f.fit()
f.summary()
print("Chi2 Distribution")
f = Fitter(gamma_data, distributions="common")
f.fit()
f.summary()
This notebook used the Workbench Science Toolkit to quickly build an AWS® Machine Learning Pipeline with the AQSolDB public dataset. We built a full AWS Machine Learning Pipeline from start to finish.
Workbench made it easy:
Using Workbench will minimizize the time and manpower needed to incorporate AWS ML into your organization. If your company would like to be a Workbench Alpha Tester, contact us at workbench@supercowpowers.com.
import numpy as np
from scipy.stats import nbinom, norm, gamma, poisson
import matplotlib.pyplot as plt
def zero_inflated_poisson(zero_inflation, size):
psi=zero_inflation # Percent of zero measurements
lam=5 # Increasing lam will fatten the tail
pois = np.random.poisson(lam=lam, size=size)
zeros = np.random.binomial(n=1, p=psi, size=size)
zero_poisson = pois * (1 - zeros)
return zero_poisson
# Tail bumps
#tail_bumps = [np.random.normal(loc=15, scale=1, size=5), np.random.normal(loc=25, scale=1, size=5)]
#return np.concatenate([zero_poisson] + tail_bumps)
def negative_binomial(size):
# Play around with these values
r = 1.0 # Decreasing this will lengthen the tail
p = 0.05 # Increasing this will put more data near zero
return nbinom.rvs(r, p, size=size)
def generate_data(dist_type, size):
outlier_1 = np.random.normal(loc=30, scale=2, size=int(0.05*size))
outlier_2 = np.random.normal(loc=40, scale=2, size=int(0.05*size))
outlier_3 = np.random.normal(loc=50, scale=2, size=int(0.05*size))
if dist_type == 'normal':
label = "Guassian/Normal Distribution"
dist = np.random.normal(loc=0, scale=1, size=size)
return label, dist
elif dist_type == 'skewed':
label = "Normal Distribution with Left Skew"
dist = np.random.normal(loc=0, scale=2, size=int(0.7*size))
skew = np.random.normal(loc=5, scale=4, size=int(0.3*size))
return label, np.concatenate([dist, skew])
elif dist_type == 'outliers':
label = "Normal Distribution with Outliers"
dist = np.random.normal(loc=0, scale=2, size=int(0.9*size))
return label, np.concatenate([dist, outlier_1])
elif dist_type == 'outliers_2':
label = "Normal Distribution with two Outliers"
dist = np.random.normal(loc=0, scale=2, size=int(0.9*size))
return label, np.concatenate([dist, outlier_1, outlier_2])
elif dist_type == 'outliers_3':
label = "Normal Distribution with three Outliers"
dist = np.random.normal(loc=0, scale=2, size=int(0.9*size))
return label, np.concatenate([dist, outlier_1, outlier_2, outlier_3])
elif dist_type == 'bimodal':
label = "Bimodal Distribution"
mode_size = int(size/2)
first_mode = np.random.normal(loc=-25, scale=10, size=mode_size)
second_mode = np.random.normal(loc=25, scale=10, size=mode_size)
return label, np.concatenate([first_mode, second_mode])
elif dist_type == 'poisson':
label = "Poisson Distribution (Discrete)"
return label, zero_inflated_poisson(0.0, size)
elif dist_type == 'zip':
label = "Zero Inflated Poisson Distribution (Discrete)"
return label, zero_inflated_poisson(0.05, size)
elif dist_type == 'negative_binom':
label = "Negative Binomial Distribution"
return label, negative_binomial(size)
elif dist_type == 'gamma':
label = "Gamma Distribution"
return label, gamma.rvs(a=1, scale=1, size=size)
elif dist_type == 'gamma_smoosh':
label = "Gamma Distribution Heavy 0 Skew"
return label, gamma.rvs(a=0.5, scale=10, size=size)
def detect_outliers_stddev(data, sigma=3):
mean, std_dev = np.mean(data), np.std(data)
cut_off = std_dev * sigma
lower, upper = mean - cut_off, mean + cut_off
return lower, upper
def detect_outliers_iqr(data, scale=1.72):
q25, q75 = np.percentile(data, 25), np.percentile(data, 75)
iqr = q75 - q25
cut_off = iqr * scale
lower, upper = q25 - cut_off, q75 + cut_off
return lower, upper
def plot_data(dist_type):
size = 5000
label, data = generate_data(dist_type, size)
lower_stddev, upper_stddev = detect_outliers_stddev(data)
lower_iqr, upper_iqr = detect_outliers_iqr(data)
plt.figure(figsize=(10, 3))
plt.hist(data, bins=50, alpha=1.0, label='Data')
plt.axvline(lower_stddev, color='r', linestyle='--', label='Std Dev Lower Bound')
plt.axvline(upper_stddev, color='r', linestyle='--', label='Std Dev Upper Bound')
plt.axvline(lower_iqr, color='g', linestyle='--', label='IQR Lower Bound')
plt.axvline(upper_iqr, color='g', linestyle='--', label='IQR Upper Bound')
plt.legend()
plt.title(label)
plt.show()