In 1962, B.P. Welford published a paper titled Note on a Method for Calculating Corrected Sums of Squares and Products. Let's review some important identities/derivations from this paper as they will come in handy later. Note that we use zero-based indexing when referencing elements of our time series.
for $n = 1, 2, \ldots, m$
\begin{align} S(Q_{i,n}) ={}& \sum \limits _{0 \leq j \lt n} \left( q_{i+j} - \mu_{Q_{i,n}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} (q_{i+j} - \mu_{Q_{i,n}})^2 + \left( q_{i+n-1} - \mu_{Q_{i,n}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left[ q_{i+j} - \mu_{Q_{i,n-1}} - \frac{1}{n} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) \right] ^2 + \left[ \frac{n-1}{n} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) \right] ^2 \\ ={}& \sum \limits _{0 \leq j \lt m-1} \left[ \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) - \frac{1}{n} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) \right] ^2 + \left( \frac{n-1}{n} \right) ^2 \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left[ \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 - \frac{2}{n} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) + \frac{1}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \right] + \frac{(n-1)^2}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 - \sum \limits _{0 \leq j \lt n-1} \frac{2}{n} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) + \sum \limits _{0 \leq j \lt n-1} \frac{1}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 + \frac{(n-1)^2}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 - 2 \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) \frac{1}{n} \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) + \sum \limits _{0 \leq j \lt n-1} \frac{1}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 + \frac{(n-1)^2}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 - 2 \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) \cdot 0 + \sum \limits _{0 \leq j \lt n-1} \frac{1}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 + \frac{(n-1)^2}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 + \frac{n-1}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 + \frac{(n-1)^2}{n^2} \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 + \left[ \frac{n-1}{n^2} + \frac{(n-1)^2}{n^2} \right] \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 + \left[ \frac{n-1+n^2-2n+1}{n^2} \right] \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) ^2 + \left[ \frac{n^2-n}{n^2} \right] \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ ={}& S(Q_{i,n-1}) + \left( \frac{n-1}{n} \right) \left( q_{i+n-1} - \mu_{Q_{i,n-1}} \right) ^2 \\ S(Q_{i,m}) ={}& S({Q_{i,m-1}}) + \left( \frac{m-1}{m} \right) \left( q_{i+m-1} - \mu_{Q_{i,m-1}} \right) ^2 \\ \end{align}Building on Equation (II) and also the fact that:
\begin{align} \mu_{Q_{i-1,n}} ={}& \frac{n-1}{n} \mu_{Q_{i-1,n-1}} + \frac{q_{i+n-2}}{n} \\ ={}& \mu_{Q_{i-1,n-1}} - \frac{1}{n} \mu_{Q_{i-1,n-1}} + \frac{q_{i+n-2}}{n} \\ ={}& \mu_{Q_{i-1,n-1}} + \frac{q_{i+n-2}}{n} - \frac{\mu_{Q_{i-1,n-1}}}{n} \\ ={}& \frac{1}{n} \sum \limits _{0 \leq j \lt n-1} q_{i+j-1} + \frac{q_{i+n-2}}{n} - \frac{\mu_{Q_{i-1,n-1}}}{n} \\ ={}& \frac{q_{i-1}}{n} + \frac{1}{n} \sum \limits _{1 \leq j \lt n-1} q_{i+j-1} + \frac{q_{i+n-2}}{n} - \frac{\mu_{Q_{i-1,n-1}}}{n} \\ ={}& \frac{q_{i-1}}{n} + \frac{1}{n} \sum \limits _{0 \leq j \lt n-1} q_{i+j} - \frac{\mu_{Q_{i-1,n-1}}}{n} \\ ={}& \frac{q_{i-1}}{n} + \mu_{Q_{i,n-1}} - \frac{\mu_{Q_{i-1,n-1}}}{n} \\ ={}& \mu_{Q_{i,n-1}} + \frac{1}{n} \left( q_{i-1} - \mu_{Q_{i-1,n-1}} \right) \\ \end{align}we can actually express $S(Q_{i-1,n},T_{i-1,n})$ with respect to $S(Q_{i,n-1},T_{i,n-1}) = \sum \limits _{0 \leq j \lt n-1} \left( q_{i+j} - \mu_{Q_{i,n-1}} \right) \left( t_{i+j} - M_{T_{i,n-1}} \right)$ and $\left( q_{i-1} - \mu_{Q_{i,n-1}} \right) \left( t_{i-1} - M_{T_{i,n-1}} \right)$:
For any sequence $T$, we can compute the mean, $\mu_{T_{i,n}}$, for any subsequence starting at position $i$ in $T$ and with subsequence length $n$ according to the following definition:
Then, it follows that:
\begin{align} t_{i+j} - \mu_{T_{i,n}} ={}& t_{i+j} - \mu_{T_{i-1,n}} - \frac{t_{i+n-1} - t_{i-1}}{n} \\ \end{align}Finally, we can derive the rolling window variance, $S$, by first calculating the correctect sum-of-squares, $CSS$: