# Typical way to create a list of squared values of list 0 to 9?
sq = []
for i in range(10):
sq.append(i**2)
print(sq)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
# List comprehension -- handy technique:
S = [x**2 for x in range(10)]
S
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
In maths: V = (1, 2, 4, 8, ... 2 12)
# In python ?:
V = [2**x for x in range(13)]
print(V)
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]
In maths: M = {x | x in S and x even}
# In python:
M = [x for x in S if x%2==0]
M
[0, 4, 16, 36, 64]
#sentence = "The quick brown fox jumps over the lazy dog"
#words = sentence.split()
# can make a list of tuples or list of lists
wlist = [(w.upper(), w.lower(), len(w)) for w in "The quick brown fox jumps over the lazy dog".split()]
wlist
[('THE', 'the', 3), ('QUICK', 'quick', 5), ('BROWN', 'brown', 5), ('FOX', 'fox', 3), ('JUMPS', 'jumps', 5), ('OVER', 'over', 4), ('THE', 'the', 3), ('LAZY', 'lazy', 4), ('DOG', 'dog', 3)]
def func(x): return x**2
print(func(4))
16
g = lambda x: x**2 # no name, no parenthesis, and no return keyword
print(g(4))
16
list1 = ['Apple', 'apple', 'ball', 'Ball', 'cat']
list2 = sorted(list1, key=lambda x: x.lower())
print(list2)
['Apple', 'apple', 'ball', 'Ball', 'cat']
list3 = [('cat', 10), ('ball', 20), ('apple', 3)]
from operator import itemgetter
list5 = sorted(list3, key=itemgetter(1), reverse=True)
print(list5)
[('ball', 20), ('cat', 10), ('apple', 3)]
list6 = sorted(list3, key=lambda x: x[1], reverse=True)
print(list6)
[('ball', 20), ('cat', 10), ('apple', 3)]
help(filter)
Help on class filter in module builtins: class filter(object) | filter(function or None, iterable) --> filter object | | Return an iterator yielding those items of iterable for which function(item) | is true. If function is None, return the items that are true. | | Methods defined here: | | __getattribute__(self, name, /) | Return getattr(self, name). | | __iter__(self, /) | Implement iter(self). | | __new__(*args, **kwargs) from builtins.type | Create and return a new object. See help(type) for accurate signature. | | __next__(self, /) | Implement next(self). | | __reduce__(...) | Return state information for pickling.
list7 = [2, 18, 9, 22, 17, 24, 8, 12, 27]
list8 = list(filter(lambda x: x%3==0, list7))
print(list8)
[18, 9, 24, 12, 27]
help(map)
Help on class map in module builtins: class map(object) | map(func, *iterables) --> map object | | Make an iterator that computes the function using arguments from | each of the iterables. Stops when the shortest iterable is exhausted. | | Methods defined here: | | __getattribute__(self, name, /) | Return getattr(self, name). | | __iter__(self, /) | Implement iter(self). | | __new__(*args, **kwargs) from builtins.type | Create and return a new object. See help(type) for accurate signature. | | __next__(self, /) | Implement next(self). | | __reduce__(...) | Return state information for pickling.
items = list(range(1, 11))
squared = list(map(lambda x: x**2, items))
print(squared)
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
# map each words with its length
words = "The quick fox jumps over the lazy dog".split()
words = [word.lower() for word in words]
print(words)
['the', 'quick', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']
w_len = list(map(lambda w: (w, w.upper(), len(w)), words))
print(w_len)
[('the', 'THE', 3), ('quick', 'QUICK', 5), ('fox', 'FOX', 3), ('jumps', 'JUMPS', 5), ('over', 'OVER', 4), ('the', 'THE', 3), ('lazy', 'LAZY', 4), ('dog', 'DOG', 3)]
import functools
help(functools)
Help on module functools: NAME functools - functools.py - Tools for working with functions and callable objects MODULE REFERENCE https://docs.python.org/3.6/library/functools The following documentation is automatically generated from the Python source files. It may be incomplete, incorrect or include features that are considered implementation detail and may vary between Python implementations. When in doubt, consult the module reference at the location listed above. CLASSES builtins.object partial partialmethod class partial(builtins.object) | partial(func, *args, **keywords) - new function with partial application | of the given arguments and keywords. | | Methods defined here: | | __call__(self, /, *args, **kwargs) | Call self as a function. | | __delattr__(self, name, /) | Implement delattr(self, name). | | __getattribute__(self, name, /) | Return getattr(self, name). | | __new__(*args, **kwargs) from builtins.type | Create and return a new object. See help(type) for accurate signature. | | __reduce__(...) | helper for pickle | | __repr__(self, /) | Return repr(self). | | __setattr__(self, name, value, /) | Implement setattr(self, name, value). | | __setstate__(...) | | ---------------------------------------------------------------------- | Data descriptors defined here: | | __dict__ | | args | tuple of arguments to future partial calls | | func | function object to use in future partial calls | | keywords | dictionary of keyword arguments to future partial calls class partialmethod(builtins.object) | Method descriptor with partial application of the given arguments | and keywords. | | Supports wrapping existing descriptors and handles non-descriptor | callables as instance methods. | | Methods defined here: | | __get__(self, obj, cls) | | __init__(self, func, *args, **keywords) | Initialize self. See help(type(self)) for accurate signature. | | __repr__(self) | Return repr(self). | | ---------------------------------------------------------------------- | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __isabstractmethod__ | | __weakref__ | list of weak references to the object (if defined) FUNCTIONS cmp_to_key(...) Convert a cmp= function into a key= function. lru_cache(maxsize=128, typed=False) Least-recently-used cache decorator. If *maxsize* is set to None, the LRU features are disabled and the cache can grow without bound. If *typed* is True, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be treated as distinct calls with distinct results. Arguments to the cached function must be hashable. View the cache statistics named tuple (hits, misses, maxsize, currsize) with f.cache_info(). Clear the cache and statistics with f.cache_clear(). Access the underlying function with f.__wrapped__. See: http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used reduce(...) reduce(function, sequence[, initial]) -> value Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). If initial is present, it is placed before the items of the sequence in the calculation, and serves as a default when the sequence is empty. singledispatch(func) Single-dispatch generic function decorator. Transforms a function into a generic function, which can have different behaviours depending upon the type of its first argument. The decorated function acts as the default implementation, and additional implementations can be registered using the register() attribute of the generic function. total_ordering(cls) Class decorator that fills in missing ordering methods update_wrapper(wrapper, wrapped, assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__'), updated=('__dict__',)) Update a wrapper function to look like the wrapped function wrapper is the function to be updated wrapped is the original function assigned is a tuple naming the attributes assigned directly from the wrapped function to the wrapper function (defaults to functools.WRAPPER_ASSIGNMENTS) updated is a tuple naming the attributes of the wrapper that are updated with the corresponding attribute from the wrapped function (defaults to functools.WRAPPER_UPDATES) wraps(wrapped, assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__'), updated=('__dict__',)) Decorator factory to apply update_wrapper() to a wrapper function Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper(). DATA WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__do... WRAPPER_UPDATES = ('__dict__',) __all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_... FILE /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/functools.py
s = functools.reduce(lambda x,y:x+y, range(1, 11))
assert sum(range(1, 11)) == s
fact = functools.reduce(lambda x,y:x*y, range(1, 11))
fact
3628800
import math
assert math.factorial(10) == fact