Here, we will learn how to use the graphix-perceval library to convert graphix.Pattern objects into perceval.Circuit objects.
We first generate a MBQC pattern using graphix library. We create GHZ state as an example.
First, let us import relevant modules and define function we will use:
from graphix import Circuit
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# define the functions required for GHZ state generation
def ghz(circuit: Circuit):
"""generate GHZ circuit"""
circuit.h(1)
circuit.h(2)
circuit.cnot(0, 1)
circuit.cnot(0, 2)
# generate the GHZ state generation pattern
circuit = Circuit(3)
ghz(circuit)
pattern = circuit.transpile().pattern
# plot the pattern
pattern.draw_graph()
Now let us convert the pattern into a circuit using the graphix-perceval library:
from graphix_perceval import to_perceval
from perceval import pdisplay
exp = to_perceval(pattern)
pdisplay(exp.circ)
By running the Perceval’s computing backends, We can obtain the probability distribution of the measurement outcomes, or sampling distribution with a given number of samples:
# distribution
exp.set_local_processor("SLOS")
dist = exp.get_probability_distribution()
dist.draw()
# sampling
exp.set_local_processor("SLOS")
dist = exp.sample(num_samples=1000)
dist.draw()
Note that the current implementation only supports SLOS and Naive as local Perceval processors. See Perceval documentation for more details.