%matplotlib inline
Here we generate and optimize pattern for QAOA circuit. You can run this code on your browser with mybinder.org - click the badge below.
import networkx as nx
import numpy as np
from graphix import Circuit
n = 4
xi = np.random.rand(6)
theta = np.random.rand(4)
g = nx.complete_graph(n)
circuit = Circuit(n)
for i, (u, v) in enumerate(g.edges):
circuit.cnot(u, v)
circuit.rz(v, xi[i])
circuit.cnot(u, v)
for v in g.nodes:
circuit.rx(v, theta[v])
transpile and get the graph state
pattern = circuit.transpile().pattern
pattern.standardize()
pattern.shift_signals()
pattern.draw_graph(flow_from_pattern=False)
perform Pauli measurements and plot the new (minimal) graph to perform the same quantum computation
pattern.perform_pauli_measurements()
pattern.draw_graph(flow_from_pattern=False)
finally, simulate the QAOA circuit
out_state = pattern.simulate_pattern()
state = circuit.simulate_statevector().statevec
print("overlap of states: ", np.abs(np.dot(state.psi.flatten().conjugate(), out_state.psi.flatten())))
# sphinx_gallery_thumbnail_number = 2