%matplotlib inline
In this example, we demonstrate simulation of MBQC involving 10k+ nodes.
You can also run this code on your browser with mybinder.org - click the badge below.
Firstly, let us import relevant modules and define the circuit:
import numpy as np
from graphix import Circuit
def cp(circuit, theta, control, target):
circuit.rz(control, theta / 2)
circuit.rz(target, theta / 2)
circuit.cnot(control, target)
circuit.rz(target, -1 * theta / 2)
circuit.cnot(control, target)
def qft_rotations(circuit, n):
circuit.h(n)
for qubit in range(n + 1, circuit.width):
cp(circuit, np.pi / 2 ** (qubit - n), qubit, n)
def swap_registers(circuit, n):
for qubit in range(n // 2):
circuit.swap(qubit, n - qubit - 1)
return circuit
def qft(circuit, n):
for i in range(n):
qft_rotations(circuit, i)
swap_registers(circuit, n)
We will simulate 55-qubit QFT, which requires graph states with more than 10000 nodes.
n = 55
print("{}-qubit QFT".format(n))
circuit = Circuit(n)
for i in range(n):
circuit.h(i)
qft(circuit, n)
# standardize pattern
pattern = circuit.transpile(opt=True).pattern
pattern.standardize()
pattern.shift_signals()
nodes, edges = pattern.get_graph()
print(f"Number of nodes: {len(nodes)}")
print(f"Number of edges: {len(edges)}")
Using efficient graph state simulator graphix.GraphSim
, we can classically preprocess Pauli measurements.
We are currently improving the speed of this process by using rust-based graph manipulation backend.
pattern.perform_pauli_measurements(use_rustworkx=True)
To specify TN backend of the simulation, simply provide as a keyword argument. here we do a very basic check that one of the statevector amplitudes is what it is expected to be:
import time # noqa: E402
t1 = time.time()
tn = pattern.simulate_pattern(backend="tensornetwork")
value = tn.get_basis_amplitude(0)
t2 = time.time()
print("amplitude of |00...0> is ", value)
print("1/2^n (true answer) is", 1 / 2**n)
print("approximate execution time in seconds: ", t2 - t1)