The $\textbf{cil.optimisation}$ framework contains three structures, namely $\texttt{Function}$, $\texttt{Operator}$ and $\texttt{Algorithm}$ that formalise a generic optimisation problem for imaging applications as $$ u^{*} =\argmin_{u\in\mathbb{X}} f(Ku) + g(u) \equiv \argmin_{u\in \mathbb{X}} \sum_{i=0}^{n-1}f_{i}K_{i}(u) + g(u). \tag{1} $$
We let $\mathbb{X}, \mathbb{Y}$ denote finite-dimensional vector spaces, $K:\mathbb{X}\rightarrow \mathbb{Y}$ a linear operator with operator norm $\|K\| = \max \{ \|Ku\|_{Y}: \|u\|_{\mathbb{X}}\leq 1 \}$ and proper, convex functions
Note: In certain cases, it is convenient to decompose $\mathbb{Y}=Y_{0}\times\dots \times Y_{n-1}$, $n\geq1$ and consider a separable function, e.g., $\texttt{BlockFunction}$,
which results to the right-side formulation in $eqn.(1)$.
With the above form, $f(y)$ is a separable sum of decoupled functions, which is useful when we need to compute the proximal operator of $f$, i.e.,
$$\mathrm{prox}_{\tau f}(z) = \begin{bmatrix} \mathrm{prox}_{\tau f_0}(z_0)\\ \mathrm{prox}_{\tau f_1}(z_1)\\ \vdots\\ \mathrm{prox}_{\tau f_{n-1}}(z_{n-1}) \end{bmatrix} = \begin{bmatrix} \underset{y_{0}\in \mathbb{Y_{0}}}{\operatorname{argmin}} \tau f_{0}(y_{0}) + \frac{1}{2}\|y_{0} - z_{0}\|^{2}\\ \underset{y_{1}\in \mathbb{Y_{1}}}{\operatorname{argmin}} \tau f_{1}(y_{1}) + \frac{1}{2}\|y_{1} - z_{1}\|^{2}\\ \vdots\\ \underset{y_{{n-1}}\in \mathbb{Y_{n-1}}}{\operatorname{argmin}} \tau f_{{n-1}}(y_{{n-1}}) + \frac{1}{2}\|y_{{n-1}} - z_{{n-1}}\|^{2}\\ \end{bmatrix} $$Initialize: $x_{0}\in \mathbb{X}$
Update: $x_{k}$
for $k\geq0$
$x_{k+1} = \mathcal{P}_{C}(x_{k} + D \mathcal{A}^{T} M ( g - \mathcal{A} x_{k}))$
where, $$ \begin{cases} M = \frac{\mathbb{1}}{\mathcal{A}\mathbb{1}}, \quad m_{ii} = \frac{1}{\sum_{j} a_{ij}}, \quad\text{ sum over columns }\\ D = \frac{\mathbb{1}}{\mathcal{A}^{T}\mathbb{1}}, \quad d_{jj} = \frac{1}{\sum_{i} a_{ij}},\quad\text{ sum over rows }\\ \end{cases} $$
Inputs: $\tau = \frac{1}{L}$, $L$ Lipschitz constant of $\nabla \mathcal{F}$, $t_{0}=1$
Initialize: $x_{0}\in \mathbb{X}$
Update: $x_{k}, t_{k}, y_{k}$
for $k\geq0$
$x_{k} = \mathrm{prox}_{\tau \mathcal{G}}(y_{k} - \tau\nabla\mathcal{F}(y^{k}))$
$t_{k+1} = 1 + \frac{\sqrt{1+4 t_{k}^{2}}}{2}$
$y_{k+1} = x_{k+1} + \frac{t_{k}-1}{t_{k+1}}(x_{k}-x_{k-1})$
Inputs: $\tau,\sigma>0$, $\tau\sigma\|K\|^{2}<1$, $\theta\in [0,1]$
Initialize: $x_{0}\in \mathbb{X}$, $y_{0}\in \mathbb{Y}$,$\overline{x}_{0}=x_{0}$ Update: $x_{k}, y_{k}, \overline{x_{k}}$
for $k\geq0$
$y_{k+1} = \mathrm{prox}_{\sigma \mathcal{F}^{*}}(y_{k} + \sigma K \overline{x}_{k})$
$x_{k+1} = \mathrm{prox}_{\tau \mathcal{G}}(x_{k} - \tau K y_{k+1})$
$\overline{x}_{k+1} = \overline{x}_{k+1} + \theta (x_{k+1} - x_{k})$
Inputs: $n = \# \mathrm{subsets}$, $\gamma=1.0$, $\rho=0.99$,$\mathrm{probability}$ $p_{i}$, $i=0,\dots,n-1$ $\\\mathrm{Stepsizes}: S_{i} = \gamma\frac{\rho}{\|A_{i}\|},\, T = \min\limits_{i} \frac{1}{\gamma}\frac{\rho p_{i}}{\|A_{i}\|}, i=0,\dots,n-1$
Initialize: $x^{0}, z^{0}=\overline{z}^{0}, y^{0}$
Update: $x_{k}, y_{k}, \overline{z_{k}}$
for $k\geq0$
$x^{k+1} = \mathrm{prox}^{T}_{\mathcal{G}}(x^{k} - T\overline{z}^{k})$
Select $i\in [n]$ at random with probability $p_{i}$
$y_{i}^{k+1} = \mathrm{prox}^{S_{i}}_{\mathcal{F}_{i}^{*}}(y_{i}^{k} + S_{i}A_{i}x^{k+1})$
$\Delta z = A_{i}^{T}(y_{i}^{k+1} - y_{i}^{k})$
$z^{k+1} = z^{k} + \Delta z$
$\overline{z}^{k+1} = z^{k+1} + \frac{\Delta z}{p_{i}}$