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Problem 3.1. (UAG5.1) A rgular function on P! is constant. Deduce that there are no non-constant morphisms P — A™
form > 1.

Solution. Suppose [ € k(P') be a rational function, which is regular everywhere. If we restrict it to the affine piece
Ay, we get f(x,1) = p(x) € k[x] (as for the case of affine variety dom f = V iff f € Ek[V]). Similarly, we can
restrict f to another affine piece A. We get, f(1,y) = f(1/y,1) = p(1/y) € k[y]. Itis possible iff p is constant.

Any morphisms P! — A™ can be given by (f1, - -+ , fm) where f; are regular on P*. Thus the function f is constant
by the previous part. |

Problem 3.2. (The quadric surface in P3).
(i) Show that the Segre embedding of P x P! gives an isomorphism of P x P with the quadyric
3171 = Q . (X()Xg = XlXQ) g ]P)S.

(ii) What are the images in Q) of the two families of lines {p} x P! and P' x {p} in P* x P'? Use this to find some
disjoint lines in P* x P, and conclude from this that P* x P' % P2,

(iii) Show that there are two lines of Q) passing through the point P = (1,0, 0,0) and that the complement U of these
two lines is the image of A X A under the Segree embedding.

(iv) Show that under the projection 7| g : Q --+ P2, U maps isomorphically to a copy of A2, and the two lines through
P are mapped to two points of P2.

(v) Find domm and dom, and give a geometric interpretation of the singularities of ™ and .
Solution.
(i) Letp : Pt x P! — P3, ([Xo, X1], [Yo, Y1]) = [XoYo, XoY1, X1Y0, X1Y1] be the Segree embedding. Then

we clearly have Im ¢ = 571 C Q. Since we know that the Segree embedding 57, = P! x P Its enough to
show that () C S} 1. Note that

Q = {[Xo, X1, Xo, X3] € P? | X X3 — X1 X, =0}

Xo X
= {[X07X1,X2,X3] € P? | det (XZ X;) = ()}

Xo X
:{[X07X17X27X3]€]P>3|rk (XZ X;) :1}7

the rank can not be zero, as at least one of the entries X, X7, X5, X3 is nonzero. Let [ X, X1, Xo, X3] € @,
and WLOG assume X, # 0, then we get there exists A, 1 7 0 such that

()2 (&) = (3)=0(X)



Thus we get that X; = %, Xy, = X0 and X3 = X2 = %, thus we get that

u By
Xo Xo X
[X07X17X27X3] = |:X07 707 707 /L_)O\:| = [M)\MU“a)\a 1] = SO([M7 1]7 [)\7 1])

Therefore we have proved that () C S 1, hence we get that ¢ induces an isomorphism of S ; and Q.

(i) Wehave o({p} x P') = {[aYp, aY1, bYp, bY1] | [Yo, V1] € P!}, which is equation of the line passing through
[a,0,0,0],]0,a,0,b] € P> Similarly image of P! x {p} is again a line in . But then note that forp # ¢ € P,
we have ({p} x P') N ({¢} x P') = 0, hence their images are disjoint lines in @). But we know that any two
lines in IP? have a intersection, hence P! x P! 2 P2,

(iii) Let us consider the image of A! x A! in P2 under the Segre embedding. We get
g g g Weg
o(A' x A') = {[ab,a,b,1] € P* | a,b € k}.

Now consider the two lines £; = {[u,0,),0] € P* | [, A\] € P'}and ly = {[u,\,0,0] € P3 |
[11, \] € P} through [1, 0,0, 0] and contained in Q. We claim that the complement U of these two lines is
(A x A'). Clearly we have (A x A') N (41 U ly) = 0. Conversely let [Xo, X1, Xa, X3] ¢ p(A! x Ab),
then [X(), Xl, Xz, Xg] = 30([@, b], [1, 0]) = [(l, 07 b, 0] S El or [XQ, X17 Xg, Xg] = (,0([1, 0], [C, d]) =
[c,d,0,0] € ly. Therefore we have shown that U = p(A! x Al).

(iv) Under the projection 7| : Q --+ P2, [ X, X1, X2, X3] — [X1, X2, X3]. Then
7(U) = m(p(A* x AY)) = [a,b,1] € A*> C P2
And the two lines /1 and ¢ maps to the two points [0, 1, 0] and [1, 0, 0] respectively.

(v) Since 7 is just the projection of P* from the point [0, 0, 0, 1] onto the P?, its domain is given by dom 7 =
P?\ [0,0,0,1],and hence dom 7| = @ \ [0, 0, 0, 1]. On the other hand the domain of the Segre embedding
isdom ¢ = P! x P!,

Problem 3.3. Which of the following expressions define rational maps ¢ : P — P™ (withn,m = 1 or 2) between
projective spaces of appropriate dimensions? In each case determine dom @, say if  is birational, and if so, describe the
inverse map.

Solution.

(a) The given map is a rational map. This is because it is well-defined for all [z, y, 2] € P?\ {[0,0, 1]} and is a
rational function in each coordinate of the image. We therefore have

domp = [, € P\ {{0,0,1]}
Further, this is a birational map, as it has the rational inverse given by the map in (c), [z, y| — [z, y, 0].

(b) The given map is not a rational map. This is because

@([1,0]) = [1707 1] # [2707 1] = 90([270])7
but[1,0] £ [2,0].

(c) The given map is a rational map. This is because it is well-defined for all [z, y] € P! and is a rational function
in each coordinate of the image. We therefore have

dom p = P'.

Further, this is a birational map, as it has the rational inverse given by the map in (a), [z, y, 2] — [z, y].



(d) The given map is a rational map. This is because it is well-defined for all [z, y, z] € P? with zyz # 0, and is a
rational function in each coordinate of the image. We therefore have,

dom ¢ = {[z,y, 2] | 2yz # 0}.

Further, ©? is the identity map on dom ¢, and so it is a birational map.

(e) The given map is a rational map. This is because it is well-defined for all [z, y, z] € P? with z # 0, and isa
rational function in each coordinate of the image. We therefore have,

dom o = {[z,y,2] | = # 0}.
The map is not birational as the function fields of the domain and image are not isomorphic.

(f) The given map is a rational map. This is because it is well-defined for all [z, y, 2] € IP? with one of , y non-zero,
and is a rational function in each coordinate of the image. We therefore have,

dom ¢ = P?\ {[0,0,1]}.
The map is not birational as there is no rational inverse.

Problem 3.4. Let C' C P be an irreducible curve defined by C = Q1 N Qa, where Q1 = (TX = q1), and Qs :
(TY = qo), with q1, g2 quadratic formsin X, Y, Z. Show that the projection 7w : P* --» P defined by (X,Y, Z,T)
(XY, Z) restricts to an isomorphism of C with the plane curve D C P? given by X g = Y q1.

Solution. Let us define the map ¢ : D --» C, as follows,

X,Y,Z,%] X #0

(XY, Z] A
(X,Y,Z,2] Y #£0

Note that this is indeed a map from D to C, asif [X,Y, Z] € Dwith X # 0, then we get that X ¢ = Y'¢1, and hence,
TX = qandTY = X8 = X2 = g, thus p([X, Y, Z]) € C, and similarly for Y # 0, we have [X,Y, Z,T] =
¢o([X,Y, Z]) € C. On the other hand restricting the projection onto C, we get that 7([X,Y, Z, T]) = [X,Y, Z],
and since T'X = ¢; and TY = gp we get that Y¢; = T XY = Xg¢y, thus we indeed have [X,Y, Z] € D.

Finally note that 7| o ¢ = idp is obvious and

XY, Z,%] ifX#0

= [X,Y,Z,T),
(XY, Z,2] Y #£0 [ |

p(rle([X,Y, Z,T])) = o([X,Y, Z]) = {
where the last equality follows from the fact that TX = ¢ and T'Y = g for points in C. Thus we indeed have
¢ o 7|c = id¢. Hence 7 restricted onto C' induces an isomorphism of C' with the plane curve D.

Problem 3.5. Foreach of the following plane curves, write down the 3 standard affine pieces, and determine the intersection
of the curve with the 3 coordinate axes.

(a) ¥’z = 2° + axz® + bz3
(b) 2%y? + y?2% + 2222 = 2zyz(v +y + 2)
() v2° = (2% + 2%)y?

Solution.



(a) The affine pieces are:
() (x=1):9y*2=1+az*+ b3
() (y=1):2=2%+arz*+ b2>
(i) (z=1):y*=2>+ax+b
The intersections with the coordinate axes are:

(i) z—axis: 23 =0
(i) The intersection with the y—axis, is the complete axis, as the equation of the curve holds trivially when
r=2z=0.

(iii) z—axis: 2% = 0

(b) The affine pieces are:
(i) (x=1): %24+ (y—2)*—2yz(y+2)=0
(i) (y=1): 2222+ (z—2)? —2z2(2+2) =0
(i) (2=1): 2%+ (z—y)* - 2zy(z +y) =0

The intersection of the given curve with any of the three axes is the complete axis in each case, because setting
any two variables to o forces the equation of the curve to hold trivially.

(c) The affine pieces are:

() (w=1):2" = (1+2%)y°
(ii) (y = 1) : 513'23 = 332 + 22

The intersection of the given curve with any of the three axes is the complete axis in each case, because setting
any two variables to o forces the equation of the curve to hold trivially.

Problem 3.6. (UAGs.7) Let p : Pt — P! be an isomorphism; identify graph of p as subvariety of P* x P! C P2, Now
do the same if p : Pt — P is given by map (X, Y) — (X2, Y?).

Solution. Consider the identity map Id : P* — P! and the given isomorphism, it will give us a map Id x¢ :
P! x P! — P! x P' by (z,y) — (2, p(2)). Under the identification of P! x P! = P? we can say, Id X is also a
morphism of variety. In the variety P* x P, the diagonal A = {(z, ) : € P'} is closed (simply because it is given
by the vanishing of 29 — 22 and 21 — x3 where [z : 1] and [z : 23] are co-ordinates of two copies of P!). It’s not
hard to see the graph of ¢ is given by the inverse image of A under Id x .

I(p) = (Id xp) ' (A)

Since the graph is closed it’s inverse image will also be closed. Thus the graph is a closed set and under zariski topology
any closed set is given by vanishing of some set of polynomials. This will help us to identify I'() as a subvariety of
P! x PL. If pisgivenby [z : y| = [f(2,y) : g(z,y)] then the graph can be given by the image of following vanishing
set under segre embedding

{[xo: @1 : 29 23]t w3 = f(x,21), 23 = g(x0,21)}

If, p given by [z, y| — [2? : y?] theimage of ([« : y], [z, y?]) is [2® : xy? : yz? : y®](image under segre embedding).
Which is rational curve Pt — P3, a sub-variety of P3.

I'(¢) ~ Rational curve in P



Problem 3.7. (i) Prove that the product of two irreducible algebraic sets is again irreducible.

(#%)

Describe the closed sets of the topology on A% = Al x A which is the product of the Zariski topologies on the two
factors; now find a closed subset of the Zariski topology of A? not of this form.

Solution.

(i)

(i)

Suppose that X XY = Q1UQ2, with each (; a closed subset of X x Y. Foreachz € X, theclosedset {z} xY
is isomorphic to Y, and is therefore irreducible. Since {z} x Y = (({z} x V)N Q1) U ({z} x Y) N Q2)
either {z} x Y C Qorelse {z} x Y C Q.

The subset X1 C X consisting of those z € X with {x} x Y C )y is a closed subset, to see this note that
X1 = Nyey Xy, where X, is the collection of points # € X such that {z} x {y} € Q;. Since X, X {y} =
(X x{y}) N Q1, X, and hence X is closed. Similarly we can define the closed subset X.

Since X = X; U Xy and X is irreducible, we either have X = X; or X = X,. But X = X implies
X XY = @, contradicting the fact the both of the ();’s are nonempty. Therefore X x Y is irreducible.

We know that the closed subsets of A under the Zariski topology are finite subsets of A' and the whole set A,

Thus under the product topology on A? = A x A! closed subsets are once again finite subsets of A' x A,
{1, ..o} x AL AY x {y1, ... ym}and Al x AL,

Consider the closed subset C' = V(X —Y) = {(a,a) | a € k} C A? Ifk is an infinite field, then C' does
not belong to any of the closed sets coming from the product topology on Al x AL,

Problem 3.8. Let C be the cubic curve of (5.0). Prove that any regular function on C'is constant.

Solution. The given curveis C' : (Y?Z = X3 4+ aX Z? + bZ3) C P%. The affine pieces are

Clo) y? =23 + ax + b, Clic) 1 2 = 3+ ax' 2" + b2

Let f be a regular function on C'. Then, dom f D Clo), and so, f € k[C(o)] = k[z,y]/(y* — 2° — az — D).
Hence, thereis ¢, 7 € k[z] such that f(z,y) = q(z) + yr(z) in k[C(p)]. Now, as dom f D C), we get that

x 1 [2
q(?) + ;r(;) = p(a', 2'),

for some polynomial p. Therefore, we can multiply out the denominators to get an expression

o', )+ 7 (2, ) = pla, )" + A(d, ) g,

in k[2/, 2’|, where { is homogeneous of degree m, T is homogeneous of degree m — 1, g = 2 + az’z"* + b2 — 2.
We now write p = p; + ppand A = A; + Ay, where py, A; consist of the odd degree terms and p,, A, consist of the
even degree terms. Then, assuming m is odd, we get

qg=p2" + Arg, T=piz" + Asg.

A similar expression holds in case m is even, by switching p; with p, and A; with A;. Now, ¢ is homogeneous of
degree m, and hence, A; g must have degree at least m. Therefore, we get (as g has the term 2’) that 2’ | ¢. Similarly,
2" | 7. Hence, we can divide the entire expression by 2/, and get ¢ homogeneous of degree m — 1 and 7 homogeneous
of degree m — 2. Hence, assuming that m is the least possible we get m = 0, and so, f = c for some constant c. This
shows that f must in fact be constant, as was required. |



Problem 3.9. (UAG 5.13) Study the embedding o : P> — P° given by [x : y : 2] — [2% : zy : w2 @ y? @ yz @ 27
and prove that  is an isomorphism. Prove that the lines of P* go over the conics of P° and the conics go over the twisted
quartics of P°.

For any line { C P2, write w(€) C P° for the projective plane spanned by the conics ¢ (L). Prove that union of 7 ({) taken
over all ¢ C P2 is a cubic hypersurface > C P,

Solution. Consider the following vanishing set on IP°,
S = V(tots — 3, tsts — 13, tots — 13, tity — tots, tity — tato, toty — tst1)
It’s not hard to see Im ¢ C S. Now note that the map ¢ gives us a surjective map between the following vector spaces,
{homogeneous quadratic polynomials in ¢y, - - - ,¢5} — {homogeneous quarticsin x,y, 2}

The first V.S is of dimension 21 and the later one has dimension 15. Thus the kernal has dimension 6. Now note that
the polynomials defining S are linearly independent. So,Im ¢ = S. Thus the image of ¢ is given by the variety S. Now
take the map ¢ : S — P3 that maps [t : - - : t5] = [to : 1 : t2] works as the inverse map of ¢ (it is defined except
for[0:0:0:0:0:1]). So, ¢ is an isomorphism. Any line in P? can be given by the set {[X : Y : AX + BY},
the image of that under p is (X%, XY, AX? + BXY,Y? AXY + BY? A?X? + 2AX BY + B*Y?). Note that
the projective transformation given by

1 0 0 0 00
0 1 0 0 00
~A =B 1 0 00
0 0 0 1 00
0 A 0 -B 10
A2 —24B 0 -B® 0 1]

is valid since its determinant is 1 (easily computed using the fact that it is a lower triangular matrix). Any conic in P?
can be re-parametrized so that it is given by [u? : uv : v?]. I’s image in S is twisted quardics.

To do the last part we can also identify S as the following set,

to 1ty
S = [toztlz---:t5]€P5:rank ty t3 t4] <1
ty t, ts
to t1 to
From the above identification of S we can say, Uycp2m(¢) is given by det | ¢; ¢35 ¢4 | = 0. This clearly determines
to tg 5
a hyper-surface in P°. [ |



