Assignment-3

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

 ${\bf Problem~3.i.}$ (UAG 5.1) A rgular function on \mathbb{P}^1 is constant. Deduce that there are no non-constant morphisms $\mathbb{P}^1\to \mathbb{A}^m$ *for* $m \geq 1$ *.*

 $\textit{Solution}$. Suppose $f\in k(\mathbb P^1)$ be a rational function, which is regular everywhere. If we restrict it to the affine piece $\mathbb{A}_{(0)}$, we get $f(x, 1) = p(x) \in k[x]$ (as for the case of affine variety $\text{dom } f = V$ iff $f \in k[V]$). Similarly, we can restrict f to another affine piece \mathbb{A}_{∞} . We get, $f(1, y) = f(1/y, 1) = p(1/y) \in k[y]$. It is possible iff p is constant.

Any morphisms $\mathbb{P}^1\to\mathbb{A}^m$ can be given by (f_1,\cdots,f_m) where f_i are regular on $\mathbb{P}^1.$ Thus the function f is constant by the previous part.

Problem 3.2. (The quadric surface in \mathbb{P}^3).

(i) Show that the Segre embedding of $\mathbb{P}^1\times \mathbb{P}^1$ gives an isomorphism of $\mathbb{P}^1\times \mathbb{P}^1$ with the quadric

$$
S_{1,1} = Q : (X_0 X_3 = X_1 X_2) \subseteq \mathbb{P}^3.
$$

- (ii) What are the images in Q of the two families of lines $\{p\}\times\mathbb{P}^1$ and $\mathbb{P}^1\times\{p\}$ in $\mathbb{P}^1\times\mathbb{P}^1$? Use this to find some disjoint lines in $\mathbb{P}^1\times \mathbb{P}^1$, and conclude from this that $\mathbb{P}^1\times \mathbb{P}^1 \not\cong \mathbb{P}^2$.
- *(iii)* Show that there are two lines of Q passing through the point $P = (1,0,0,0)$ and that the complement U of these two lines is the image of $\mathbb{A}^1 \times \mathbb{A}^1$ under the Segree embedding.
- (iv) Show that under the projection $\pi|_Q:Q\dashrightarrow \mathbb{P}^2$, U maps isomorphically to a copy of \mathbb{A}^2 , and the two lines through P are mapped to two points of \mathbb{P}^2 .
- *(v) Find* domπ *and* domφ*, and give a geometric interpretation of the singularities of* π *and* φ*.*

Solution.

(i) Let $\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$, $([X_0, X_1], [Y_0, Y_1]) \mapsto [X_0Y_0, X_0Y_1, X_1Y_0, X_1Y_1]$ be the Segree embedding. Then we clearly have Im $\varphi = S_{1,1} \subseteq Q$. Since we know that the Segree embedding $S_{1,1} \cong \mathbb{P}^1 \times \mathbb{P}^1$. Its enough to show that $Q \subseteq S_{1,1}$. Note that

$$
Q = \{ [X_0, X_1, X_2, X_3] \in \mathbb{P}^3 \mid X_0 X_3 - X_1 X_2 = 0 \}
$$

=
$$
\{ [X_0, X_1, X_2, X_3] \in \mathbb{P}^3 \mid \det \begin{pmatrix} X_0 & X_1 \\ X_2 & X_3 \end{pmatrix} = 0 \}
$$

=
$$
\{ [X_0, X_1, X_2, X_3] \in \mathbb{P}^3 \mid \text{rk} \begin{pmatrix} X_0 & X_1 \\ X_2 & X_3 \end{pmatrix} = 1 \},
$$

the rank can not be zero, as at least one of the entries X_0, X_1, X_2, X_3 is nonzero. Let $[X_0, X_1, X_2, X_3] \in Q$, and WLOG assume $X_0 \neq 0$, then we get there exists $\lambda, \mu \neq 0$ such that

$$
\begin{pmatrix} X_0 \\ X_2 \end{pmatrix} = \lambda \begin{pmatrix} X_1 \\ X_3 \end{pmatrix} \text{ and } \begin{pmatrix} X_0 \\ X_1 \end{pmatrix} = \mu \begin{pmatrix} X_2 \\ X_3 \end{pmatrix}
$$

Thus we get that $X_1 = \frac{X_0}{\lambda}$ $\frac{X_0}{\lambda}, X_2 = \frac{X_0}{\mu}$ $\frac{X_0}{\mu}$ and $X_3=\frac{X_2}{\lambda}=\frac{X_0}{\mu\lambda},$ thus we get that

$$
[X_0, X_1, X_2, X_3] = \left[X_0, \frac{X_0}{\lambda}, \frac{X_0}{\mu}, \frac{X_0}{\mu\lambda}\right] = [\mu\lambda, \mu, \lambda, 1] = \varphi([\mu, 1], [\lambda, 1]).
$$

Therefore we have proved that $Q \subseteq S_{1,1}$, hence we get that φ induces an isomorphism of $S_{1,1}$ and Q .

- (ii) We have $\varphi(\{p\}\times\mathbb{P}^1)=\{[aY_0,aY_1,bY_0,bY_1]\mid [Y_0,Y_1]\in\mathbb{P}^1\},$ which is equation of the line passing through $[a,0,b,0], [0,a,0,b] \in \mathbb{P}^3.$ Similarly image of $\mathbb{P}^1 \times \{p\}$ is again a line in $\mathbb{P}^3.$ But then note that for $p \neq q \in \mathbb{P}^1,$ we have $(\{p\}\times\mathbb{P}^1)\cap(\{q\}\times\mathbb{P}^1)=\emptyset,$ hence their images are disjoint lines in $Q.$ But we know that any two lines in \mathbb{P}^2 have a intersection, hence $\mathbb{P}^1 \times \mathbb{P}^1 \not\cong \mathbb{P}^2$.
- (iii) Let us consider the image of $\mathbb{A}^1\times \mathbb{A}^1$ in \mathbb{P}^3 under the Segre embedding. We get

$$
\varphi(\mathbb{A}^1 \times \mathbb{A}^1) = \{ [ab, a, b, 1] \in \mathbb{P}^3 \mid a, b \in k \}.
$$

Now consider the two lines $\ell_1 = \{[\mu, 0, \lambda, 0] \in \mathbb{P}^3 \mid [\mu, \lambda] \in \mathbb{P}^1 \}$ and $\ell_2 = \{[\mu, \lambda, 0, 0] \in \mathbb{P}^3 \mid \ell_2 \neq 0\}$ $[\mu, \lambda] \in \mathbb{P}^1$ through $[1, 0, 0, 0]$ and contained in Q. We claim that the complement U of these two lines is $\varphi(\mathbb{A}^1\times \mathbb{A}^1)$. Clearly we have $\varphi(\mathbb{A}^1\times \mathbb{A}^1)\cap(\ell_1\cup\ell_2)=\emptyset$. Conversely let $[X_0,X_1,X_2,X_3]\notin \varphi(\mathbb{A}^1\times \mathbb{A}^1),$ then $[X_0, X_1, X_2, X_3] = \varphi([a, b], [1, 0]) = [a, 0, b, 0] \in \ell_1$ or $[X_0, X_1, X_2, X_3] = \varphi([1, 0], [c, d])$ $[c, d, 0, 0] \in \ell_2$. Therefore we have shown that $U = \varphi(\mathbb{A}^1 \times \mathbb{A}^1)$.

(iv) Under the projection $\pi|_Q: Q \dashrightarrow \mathbb{P}^2$, $[X_0, X_1, X_2, X_3] \mapsto [X_1, X_2, X_3]$. Then

$$
\pi(U) = \pi(\varphi(\mathbb{A}^1 \times \mathbb{A}^1)) = [a, b, 1] \in \mathbb{A}^2 \subseteq \mathbb{P}^2.
$$

And the two lines ℓ_1 and ℓ_2 maps to the two points $[0, 1, 0]$ and $[1, 0, 0]$ respectively.

(v) Since π is just the projection of \mathbb{P}^3 from the point $[0,0,0,1]$ onto the \mathbb{P}^2 , its domain is given by $\mathrm{dom}\,\pi$ = $\mathbb{P}^3\setminus[0,0,0,1]$, and hence $\mathrm{dom}\,\pi|_Q=Q\setminus[0,0,0,1].$ On the other hand the domain of the Segre embedding is $\operatorname{dom} \varphi = \mathbb{P}^1 \times \mathbb{P}^1$.

Problem 3.3. *Which of the following expressions define rational maps* $\varphi : \mathbb{P}^n \to \mathbb{P}^m$ *(with* n, $m = 1$ or 2) between *projective spaces of appropriate dimensions? In each case determine* dom φ, *say if* φ *is birational, and if so, describe the inverse map.*

Solution.

(a) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2 \setminus \{[0, 0, 1]\}$ and is a rational function in each coordinate of the image. We therefore have

$$
\operatorname{dom}\varphi = [x, y, z] \in \mathbb{P}^2 \setminus \{ [0, 0, 1] \}.
$$

Further, this is a birational map, as it has the rational inverse given by the map in (c), $[x, y] \mapsto [x, y, 0].$

(b) The given map is not a rational map. This is because

$$
\varphi([1,0]) = [1,0,1] \neq [2,0,1] = \varphi([2,0]),
$$

but $[1, 0] \neq [2, 0]$.

(c) The given map is a rational map. This is because it is well-defined for all $[z,y]\in\mathbb{P}^1$ and is a rational function in each coordinate of the image. We therefore have

$$
\operatorname{dom}\varphi=\mathbb{P}^1.
$$

Further, this is a birational map, as it has the rational inverse given by the map in (a), $[x, y, z] \mapsto [x, y]$.

(d) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with $xyz \neq 0$, and is a rational function in each coordinate of the image. We therefore have,

$$
\operatorname{dom}\varphi = \{ [x, y, z] \mid xyz \neq 0 \}.
$$

Further, φ^2 is the identity map on $\mathrm{dom}\, \varphi$, and so it is a birational map.

(e) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with $z \neq 0$, and is a rational function in each coordinate of the image. We therefore have,

$$
\operatorname{dom}\varphi = \{ [x, y, z] \mid z \neq 0 \}.
$$

The map is not birational as the function fields of the domain and image are not isomorphic.

(f) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with one of x, y non-zero, and is a rational function in each coordinate of the image. We therefore have,

$$
\operatorname{dom}\varphi=\mathbb{P}^2\setminus\{[0,0,1]\}.
$$

The map is not birational as there is no rational inverse.

Problem 3.4. Let $C \subseteq \mathbb{P}^3$ be an irreducible curve defined by $C = Q_1 \cap Q_2$, where $Q_1 : (TX = q_1)$, and $Q_2 :$ $(TY = q_2)$, with q_1,q_2 quadratic forms in $X,Y,Z.$ Show that the projection $\pi:\mathbb{P}^3\dashrightarrow\mathbb{P}^2$ defined by $(X,Y,Z,T)\mapsto$ (X,Y,Z) restricts to an isomorphism of C with the plane curve $D \subseteq \mathbb{P}^2$ given by $X q_2 = Y q_1.$

Solution. Let us define the map $\varphi : D \dashrightarrow C$, as follows,

$$
[X,Y,Z] \mapsto \begin{cases} [X,Y,Z,\frac{q_1}{X}] & \text{if } X \neq 0\\ [X,Y,Z,\frac{q_2}{Y}] & \text{if } Y \neq 0 \end{cases}
$$

Note that this is indeed a map from D to C, as if $[X, Y, Z] \in D$ with $X \neq 0$, then we get that $Xq_2 = Yq_1$, and hence, $TX=q_1$ and $TY=\frac{Yq_1}{X}=\frac{Xq_2}{X}=q_2$, thus $\varphi([X,Y,Z])\in C$, and similarly for $Y\neq 0,$ we have $[X,Y,Z,T]=$ $\varphi([X,Y,Z]) \in C$. On the other hand restricting the projection onto C, we get that $\pi([X,Y,Z,T]) = [X,Y,Z]$, and since $TX = q_1$ and $TY = q_2$ we get that $Yq_1 = TXY = Xq_2$, thus we indeed have $[X, Y, Z] \in D$.

Finally note that $\pi|_C \circ \varphi = \mathrm{id}_D$ is obvious and

$$
\varphi(\pi|_C([X,Y,Z,T])) = \varphi([X,Y,Z]) = \begin{cases} [X,Y,Z,\frac{q_1}{X}] & \text{if } X \neq 0 \\ [X,Y,Z,\frac{q_2}{Y}] & \text{if } Y \neq 0 \end{cases} = [X,Y,Z,T],
$$

where the last equality follows from the fact that $TX = q_1$ and $TY = q_2$ for points in C. Thus we indeed have $\varphi \circ \pi|_C = \text{id}_C$. Hence π restricted onto C induces an isomorphism of C with the plane curve D .

Problem 3.5. For each of the following plane curves, write down the 3 standard affine pieces, and determine the intersection *of the curve with the 3 coordinate axes.*

(a) $y^2z = x^3 + axz^2 + bz^3$ (b) $x^2y^2 + y^2z^2 + x^2z^2 = 2xyz(x + y + z)$ (*c*) $xz^3 = (x^2 + z^2)y^2$

Solution.

(a) The affine pieces are:

(i) $(x = 1)$: $y^2z = 1 + az^2 + bz^3$

(ii)
$$
(y = 1): z = x^3 + axz^2 + bz^3
$$

(iii) $(z = 1)$: $y^2 = x^3 + ax + b$

The intersections with the coordinate axes are:

- (i) x axis: $x^3 = 0$
- (ii) The intersection with the y–axis, is the complete axis, as the equation of the curve holds trivially when $x=z=0.$
- (iii) z axis: $z^3 = 0$
- (b) The affine pieces are:
	- (i) $(x = 1)$: $y^2z^2 + (y z)^2 2yz(y + z) = 0$ (ii) $(y = 1)$: $z^2x^2 + (z - x)^2 - 2zx(z + x) = 0$ (iii) $(z = 1)$: $x^2y^2 + (x - y)^2 - 2xy(x + y) = 0$

The intersection of the given curve with any of the three axes is the complete axis in each case, because setting any two variables to 0 forces the equation of the curve to hold trivially.

- (c) The affine pieces are:
	- (i) $(x = 1)$: $z^3 = (1 + z^2)y^2$
	- (ii) $(y = 1)$: $xz^3 = x^2 + z^2$
	- (iii) $(z = 1) : x = (x^2 + 1)y^2$

The intersection of the given curve with any of the three axes is the complete axis in each case, because setting any two variables to 0 forces the equation of the curve to hold trivially.

 ${\bf Problem \ 3.6.}$ (UAG 5.7) Let $\varphi:\mathbb{P}^1\to\mathbb{P}^1$ be an isomorphism; identify graph of φ as subvariety of $\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^3.$ Now *do the same if* $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ *is given by map* $(X, Y) \mapsto (X^2, Y^2)$ *.*

Solution. Consider the identity map Id $: \mathbb{P}^1 \to \mathbb{P}^1$ and the given isomorphism, it will give us a map $\mathrm{Id} \times \varphi$ $:$ $\mathbb{P}^1\times\mathbb{P}^1\to\mathbb{P}^1\times\mathbb{P}^1$ by $(x,y)\mapsto (\stackrel{\cdot}{x},\varphi(x)).$ Under the identification of $\mathbb{P}^1\times\mathbb{P}^1=\mathbb{P}^3$ we can say, Id $\times\varphi$ is also a morphism of variety. In the variety $\mathbb{P}^1\times\mathbb{P}^1,$ the diagonal $\Delta=\{(x,x):x\in\mathbb{P}^1\}$ is closed (simply because it is given by the vanishing of x_0-x_2 and x_1-x_3 where $[x_0:x_1]$ and $[x_2:x_3]$ are co-ordinates of two copies of \mathbb{P}^1). It's not hard to see the graph of φ is given by the inverse image of Δ under Id $\times \varphi$.

$$
\Gamma(\varphi) = (\mathrm{Id} \times \varphi)^{-1}(\Delta)
$$

Since the graph is closed it's inverse image will also be closed. Thus the graph is a closed set and under zariski topology any closed set is given by vanishing of some set of polynomials. This will help us to identify $\Gamma(\varphi)$ as a subvariety of $\mathbb{P}^1\times\mathbb{P}^1.$ If φ is given by $[x:y]\to [f(x,y):g(x,y)]$ then the graph can be given by the image of following vanishing set under segre embedding

$$
\{ [x_0 : x_1 : x_2 : x_3] : x_2 = f(x_0, x_1), x_3 = g(x_0, x_1) \}
$$

If, φ given by $[x,y]\mapsto [x^2:y^2]$ the image of $([x:y],[x^2,y^2])$ is $[x^3:xy^2:yx^2:y^3]$ (image under segre embedding). Which is rational curve $\mathbb{P}^1 \to \mathbb{P}^3$, a sub-variety of \mathbb{P}^3 .

$$
\Gamma(\varphi)\simeq \mathrm{Rational\,curve\,in\,} \mathbb{P}^3
$$

Problem 3.7. *(i) Prove that the product of two irreducible algebraic sets is again irreducible.*

(ii) Describe the closed sets of the topology on $\mathbb{A}^2=\mathbb{A}^1\times\mathbb{A}^1$ which is the product of the Zariski topologies on the two *factors; now find a closed subset of the Zariski topology of* A ² *not of this form.*

Solution.

(i) Suppose that $X\times Y=Q_1\cup Q_2$, with each Q_i a closed subset of $X\times Y$. For each $x\in X$, the closed set $\{x\}\times Y$ is isomorphic to Y, and is therefore irreducible. Since $\{x\} \times Y = ((\{x\} \times Y) \cap Q_1) \cup ((\{x\} \times Y) \cap Q_2)$ either $\{x\} \times Y \subseteq Q_1$ or else $\{x\} \times Y \subseteq Q_2$.

The subset $X_1 \subseteq X$ consisting of those $x \in X$ with $\{x\} \times Y \subseteq Q_1$ is a closed subset, to see this note that $X_1 = \bigcap_{y \in Y} X_y$, where X_y is the collection of points $x \in X$ such that $\{x\} \times \{y\} \in Q_1$. Since $X_y \times \{y\} =$ $(X \times \{y\}) \cap Q_1, X_y$ and hence X_1 is closed. Similarly we can define the closed subset X_2 .

Since $X = X_1 \cup X_2$ and X is irreducible, we either have $X = X_1$ or $X = X_2$. But $X = X_i$ implies $X \times Y = Q_i$, contradicting the fact the both of the Q_i 's are nonempty. Therefore $X \times Y$ is irreducible.

(ii) We know that the closed subsets of \mathbb{A}^1 under the Zariski topology are finite subsets of \mathbb{A}^1 and the whole set $\mathbb{A}^1.$ Thus under the product topology on $\mathbb{A}^2=\mathbb{A}^1\times\mathbb{A}^1$ closed subsets are once again finite subsets of $\mathbb{A}^1\times\mathbb{A}^1,$ ${x_1, \ldots, x_n} \times \mathbb{A}^1$, $\mathbb{A}^1 \times {y_1, \ldots, y_m}$ and $\mathbb{A}^1 \times \mathbb{A}^1$.

Consider the closed subset $C = V(X - Y) = \{(a, a) | a \in k\} \subseteq \mathbb{A}^2$. If k is an infinite field, then C does not belong to any of the closed sets coming from the product topology on $\mathbb{A}^1 \times \mathbb{A}^1.$

Problem 3.8. *Let* C *be the cubic curve of (5.0). Prove that any regular function on* C *is constant.*

Solution. The given curve is $C:(Y^2Z=X^3+aXZ^2+bZ^3)\subset\mathbb{P}^2.$ The affine pieces are

$$
C_{(0)}: y^2 = x^3 + ax + b, \quad C_{(\infty)}: z' = x'^3 + ax'z'^2 + bz'^3
$$

Let f be a regular function on C. Then, $\text{dom } f \supset C_{(0)}$, and so, $f \in k[C_{(0)}] = k[x,y]/(y^2 - x^3 - ax - b)$. Hence, there is $q,r\in k[x]$ such that $f(x,y)\equiv q(x)+yr(x)$ in $k[C_{(0)}].$ Now, as $\mathrm{dom}\, f\supset C_{(\infty)},$ we get that

$$
q\left(\frac{x'}{z'}\right) + \frac{1}{z'}r\left(\frac{x'}{z'}\right) \equiv p(x', z'),
$$

for some polynomial p . Therefore, we can multiply out the denominators to get an expression

$$
\widetilde{q}(x',z') + \widetilde{r}(x',z') = p(x',z')z'^m + A(x',z')g,
$$

in k[x', z'], where \widetilde{q} is homogeneous of degree m, \widetilde{r} is homogeneous of degree $m-1, g = x'^3 + ax'z'^2 + bz'^3 - z'.$
We now write $n = n + n$ and $A = A + A$ where $n = A$ consist of the odd degree terms and $n = A$ consist of the We now write $p = p_1 + p_2$ and $A = A_1 + A_2$, where p_1, A_1 consist of the odd degree terms and p_2, A_2 consist of the even degree terms. Then, assuming m is odd, we get

$$
\widetilde{q} = p_2 z'^m + A_1 g, \quad \widetilde{r} = p_1 z_1^m + A_2 g.
$$

A similar expression holds in case m is even, by switching p_1 with p_2 and A_1 with A_2 . Now, \widetilde{q} is homogeneous of degree m, and hence, A_1g must have degree at least m. Therefore, we get (as g has the term z') that $z' | \tilde{q}$. Similarly,
 $z' | \tilde{x}$. Hence, we can divide the entire expression by z' and get \tilde{q} homogeneous z' | \tilde{r} . Hence, we can divide the entire expression by z', and get \tilde{q} homogeneous of degree $m - 1$ and \tilde{r} homogeneous
of degree $m - 2$. Hence, assuming that m is the least possible we get $m = 0$, and of degree $m-2$. Hence, assuming that m is the least possible we get $m=0$, and so, $f\equiv c$ for some constant c. This shows that f must in fact be constant, as was required.

Problem 3.9. *(UAG 5.13) Study the embedding* $\varphi : \mathbb{P}^2 \to \mathbb{P}^5$ given by $[x : y : z] \mapsto [x^2 : xy : xz : y^2 : yz : z^2]$ *and prove that* φ *is an isomorphism. Prove that the lines of* P 2 *go over the conics of* P ⁵ *and the conics go over the twisted* \hat{q} *uartics of* \mathbb{P}^5 .

For any line $\ell\subset\mathbb P^2$, write $\pi(\ell)\subseteq\mathbb P^5$ for the projective plane spanned by the conics $\varphi(\ell)$. Prove that union of $\pi(\ell)$ taken over all $\ell \subset \mathbb{P}^2$ is a cubic hypersurface $\Sigma \subseteq \mathbb{P}^5.$

 $\textit{Solution}$. Consider the following vanishing set on $\mathbb{P}^5,$

$$
S = V(t_0t_3 - t_1^2, t_3t_5 - t_4^2, t_0t_5 - t_2^2, t_1t_2 - t_0t_4, t_1t_4 - t_3t_2, t_2t_4 - t_5t_1)
$$

It's not hard to see Im $\varphi \subset S$. Now note that the map φ gives us a surjective map between the following vector spaces,

{homogeneous quadratic polynomials in t_0, \dots, t_5 } \rightarrow {homogeneous quartics in x, y, z }

The first V.S is of dimension 21 and the later one has dimension 15. Thus the kernal has dimension 6. Now note that the polynomials defining S are linearly independent. So, Im $\varphi = S$. Thus the image of φ is given by the variety S. Now take the map $\psi:S\to\bar{\mathbb{P}}^3$ that maps $[t_0:\cdots:t_5]\to[t_0:t_1:t_2]$ works as the inverse map of φ (it is defined except for $[0:0:0:0:0:1]$). So, φ is an isomorphism. Any line in \mathbb{P}^2 can be given by the set $\{[X:Y:AX+BY]\},$ the image of that under φ is $(X^2, XY, AX^2 + BXY, Y^2, AXY + BY^2, A^2X^2 + 2AXBY + B^2Y^2).$ Note that the projective transformation given by

is valid since its determinant is 1 (easily computed using the fact that it is a lower triangular matrix). Any conic in \mathbb{P}^2 can be re-parametrized so that it is given by $[u^2:uv:v^2].$ It's image in S is twisted quardics.

To do the last part we can also identify S as the following set,

$$
S = \left\{ [t_0 : t_1 : \dots : t_5] \in \mathbb{P}^5 : \text{rank} \begin{pmatrix} t_0 & t_1 & t_2 \\ t_1 & t_3 & t_4 \\ t_2 & t_4 & t_5 \end{pmatrix} \le 1 \right\}
$$

From the above identification of S we can say, $\cup_{\ell \subset \mathbb{P}^2} \pi(\ell)$ is given by \det $\sqrt{ }$ $\overline{1}$ t_0 t_1 t_2 t_1 t_3 t_4 t_2 t_4 t_5 \setminus $\Big\} = 0$. This clearly determines . ■

a hyper-surface in \mathbb{P}^5