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Problem 5.5

Let F (X, Y, Z) =
∑n

i=m Fi(X,Z)Y n−i. Then for P = [0 : 1 : 0]

mP (F ) = mφ(P )(F∗)

= m(0,0)(
n∑

i=m

Fi(X,Z))

= m.

A line L is tangent to F if and only if I(P, F ∩ L) > mp(F ), thus we must have

I(P, F ∩ L) = dimk OP (P2)/(F∗, L∗)

= dimk OP (P2)/(F (X/Y, 1, Z/Y ), L/Y )

= dimk O(0,0)(A2)/(F (X, 1, Z), L(X, 1, Z))O(0,0)(A2)

= I((0, 0), F (X, 1, Z) ∩ L(X, 1, Z)).

Thus we get that I((0, 0), F (X, 1, Z) ∩ L(X, 1, Z)) > m, hence L(X, 1, Z) is tangent to
F (X, 1, Z), thus it must be a factor of Fm(X,Z) (by defnition of tangent for an affine curve).
Therefore, the tangents to F are determined by the factors of Fm(X,Z).

Problem 5.7

Let F and G be two plane curves with no common components. Let L be a line not contained
in V (FG) ⊆ P2. Then by problem 12, we know that F ∩ L and G ∩ L are finite. Now there
exists a projective transformation that takes the line L to Z. Then under this projective
transformation we know that intersection numbers of F and G are preserved. And we have

F ∩G = ((F ∩ U) ∩ (G ∩ U)︸ ︷︷ ︸
A

) ∪ ((F ∩ Z) ∪ (G ∩ Z)︸ ︷︷ ︸
B

)

where U = {[x : y : z] ∈ P2 | z = 1}. Note that B is finite by the choice of the line L. Now
F ∩ U and G ∩ U are affine curves given by f = F (X, Y, 1) and g = G(X, Y, 1). Now since
F and G does not have any common component so does f and g (since otherwise we would
have hp = f and hq = g for some h, p, q ∈ k[X, Y ], then h∗p∗ = F and h∗q∗ = G, but then
h∗ is a common component of F and G, contradiction!). But we have previously shown that
if two affine curves have no common component then f ∩ g is finite. Hence both A and B
are finite, thus F ∩G is finite.
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Problem 5.12

Part (a). Let P ∈ [0 : 1 : 0] ∈ F where F is a curve of degree of n. Let F (X, Y, Z) =∑n
i=0 Fi(Y, Z)X

i with Fi is a form of degree n−i with F0 ̸= 0 and let F0(Y, Z) =
∑m+k

i=m aiY
iZn−i

(with m, k ≥ 0 and m+ k ≤ n− 1, there is no Y n term as P = [0 : 1 : 0] ∈ F ).∑
P∈P2

I(P, F ∩X) =
∑

P∈F0∩X

I(P, F0 ∩X)

=
∑

P∈F0∩X∩U1

I(P, F0 ∩X) + I([0 : 0 : 1], F0 ∩X)

=
∑
t∈k

I([0 : 1 : t], F0 ∩X) + I([0 : 0 : 1], F0 ∩X)

=
∑
t∈k

dimk

(
O[0:1:t](P2)/(F0∗ ∩X∗)

)
+ dimk

(
O[0:0:1](P2)/(F0∗ ∩X∗)

)
=

∑
t∈k

dimk

(
O(0,t)(A2)/(F0(1, Z), X)O(0,t)(A2)

)
+ dimk

(
O(0,0)(P2)/(F0(Y, 1), X)O(0,0)(A2)

)
=

∑
t∈k

I((0, t), F0(1, Z) ∩X) + ordX
(0,0)(F0(Y, 1))

=
∑

P∈F0(1,Z)∩X

I(P, F0(1, Z) ∩X) + ordX
(0,0)(F0(Y, 1))

= degF0(1, Z) degX +m

= (n−m) +m = n.

Hence we have proved that
∑

P∈P2 I(P, F ∩X) = n.

Part (b). Now if L is not a line contained in F , we can find a projective transformation
taking P ∈ F 7→ [0 : 1 : 0] and L 7→ X, then by part (a), we get that∑

P∈P2

I(P, F ∩ L) = n.

Problem 5.14

We will begin with the assumption, the underlying field k is infinte and algebraically closed
(according to contexts). The property of lines passing through points is a projective property.
So we can take a suitable projective transformation so that P1 = [0 : 0 : 1]. Thus, any line
passing through this looks like ax + by = 0 where a, b ∈ k. The set of lines passing through
P1 is

A = {x+my : m ∈ k} ∪ {y = 0}

Since, the field is infinite, there is infinitely many elements in A. Given two points in P2

there is a unique line passing through P1 and that point. Thus the set of lines

L = {ℓ pass through P1 and Pi : 2 ≤ i ≤ n} ⊂ A
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is finite. So there are only finitely many line in the above set. But in A there are infinitely
elements. So, there are infinitely many elements in A \ L.

Since P1 is a simple point of F , there is a tangent T at P so that the tangent T don’t
contained in V (F ) (or F ). From the problem 5.12 we can say,∑

I(P ;F ∩ T ) = n

where n = degF . Thus, If we take P2, · · · , Pm be the other intersection points (here m ≤ n)
of T and F , by the previous calculation we can say there exists infinitely many lines through
P don’t intersect F at Pi (i > 1). These lines are transversal to F . ■

Problem 5.18

Let us consider the general equation of conic in P2, that is

Ax2 +By2 + Cz2 + Exy + Fyz +Gzx = 0

Since the pont [0 : 0 : 1] and [0 : 1 : 0], [1 : 0 : 0] passes through the above conic we can
say, A = B = C = 0. Thus the equation of conic reduces to Exy + Fyz + Gzx = 0. Also
the points [1 : 1 : 1] and [1 : 2 : 3] passes through the curve. So we have the following linear
equations,

E + F +G = 0

2E + 6F + 3G = 0

=⇒
(
1 1 1
2 6 3

)E
F
G

 = 0

Note that the rows of the aboe matrix are linearly independent. So the null space of it must
have dimension 1. Note that (3, −4, 1)T is a solution to the above matrix equation. Since
the dimension of null space is 1 we can say any other solution must be a scaler multiple of
(3, −4, 1)T . So the equation of conic passing through the five points is λ(3xy−4yz+zx) = 0.
This will represent a unique conic in P2. By contruction the conic is unique! ■

Problem 5.19

Let us consider an arbitrary cubic

aX3 + bX2Y + cX2Z + dY 3 + eXY 2 + fY 2Z + gZ3 + hXZ2 + iY Z2 + jXY Z
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Now given that the cubic passes through the following points: [0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 1],
[1 : 1 : 1], [0 : 2 : 1], [2 : 0 : 1], [1 : 2 : 1], [2 : 1 : 1], and [2 : 2 : 1] gives us



0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0 1 0
1 0 1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1
0 0 0 8 0 4 1 0 2 0
8 0 4 0 0 0 1 2 0 0
2 2 1 8 4 4 1 1 2 2
8 4 4 1 2 1 1 2 1 2
8 8 4 8 8 4 1 2 2 4





a
b
c
d
e
f
g
h
i
j


= 0.

The rank of the above matrix is 9, thus the dimension of the kernel is 1, hence there exists
an unique cubic passing through all the points.

Problem 5.25

Since the polynomial F = F1F2 have c ≥ 1 simple component, the polynomial may not be
irreducible. Let, F = F1F2 and at every point P , mP (F ) = mP (F1) +mP (F2). Thus,∑

P

mP (F )(mP (F )− 1)

2
=

∑
P

(mP (F1) +mP (F2))(mP (F1) +mP (F2)− 1)

2

=
∑
P

mP (F1)(mP (F1)− 1)

2
+
∑
P

mP (F2)(mP (F2)− 1)

2

+
∑
P

mP (F1)mP (F2)

Let, p = degF1 and q = degF2. If F1 and F2 were irreducible then we must have∑
P

mP (F )(mP (F )− 1)

2
=

∑
P

mP (F1)(mP (F1)− 1)

2
+
∑
P

mP (F2)(mP (F2)− 1)

2

+
∑
P

mP (F1)mP (F2)

∗
≤ (p− 1)(p− 2)

2
+

(q − 1)(q − 2)

2
+ pq

=
(p+ q − 1)(p+ q − 2)

2
+ 1

=
(n− 1)(n− 2)

2
+ 1

here, ∗ comes from the corollary 1 of Bézout’s theorem and theorem of section 5.4. In this
case we had c = 2. Now we will proceed using induction. Assume the result is true for some
curve with c − 1 simple components. Again assume F = F1F2 with the degrees mentioned
above and F1 has c − 1-simple components and F2 is irreducible. Thus using induction we
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have,∑
P

mP (F )(mP (F )− 1)

2
=

∑
P

mP (F1)(mP (F1)− 1)

2
+
∑
P

mP (F2)(mP (F2)− 1)

2

+
∑
P

mP (F1)mP (F2)

≤ (p− 1)(p− 2)

2
+ c− 2︸ ︷︷ ︸

induction step

+
(q − 1)(q − 2)

2
+ pq

=
(p+ q − 1)(p+ q − 2)

2
+ c− 1 =

(n− 1)(n− 2)

2
+ c− 1

Thus our induction step is complete. It’s not hard to note that a polynomial of degree n can
have at most n linear factor, i.e atmost n simple components. Thus c ≤ n and hence the
final term in the above calculation is bounded above by n(n− 1)/2. ■

Problem 5.28

Let L be a line through P . As P = [0, 1, 0], L must be of the form aX + bZ = 0. If b = 0,
that is, L is the line X = 0, then L ∩ F consists of [0, 1, 0] and [0, 0, 1].

Now suppose that b ̸= 0. Then, any point on L satisfies Z = −a
b
X. Putting this in the

polynomial defining F we get,

Xp+1 − Y p

(
−a

b

)
X = X(bXp + aY b) = bX(X − λY )p,

where λp = −a
b

and we use the fact that the field is of characteristic p. Hence, either X = 0
or X = λY . This gives either Z = 0 or Z = λp+1Y . So, if L is not the line X = 0, L ∩ F
consists of the points [λy, y, λp+1y], y ∈ k, where λp = −a

b
.

We have,
∂F

∂X
= (p+ 1)Xp = Xp,

∂F

∂Y
= −pY p−1Z = 0,

∂F

∂Z
= −Y p.

Hence, [x, y, z] is a simple point of F iff xp+1 = ypz and one of x, y is non-zero. The tangent
to F at such a point is then given by xpX − ypZ = 0, which clearly passes through the point
[0, 1, 0] as required. ■

Problem 5.31

Part (a). Applying the Pascal’s theorem with P1 = P2, P3 = P4 and P5 = P6 we get
that, for any triangle P1P3P5 inscribed on a cubic, the intersection of the tangent at each
vertex with the opposite side of the triangle are collinear. In the given figure P1P3P5 is the
triangle inscribed on a cubic, and the tangent at P1 intersects the opposite side P3P5 at D,
we similarly define E and F , then D,E and F are collinear.
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Figure 1: Sketch of Pascal’s thoerem for P1 = P2, P3 = P4 and P5 = P6.

Part (b). Applying the Pascal Theorem with P1 = P2, we get that for any arbitrary five
points P1, P3, P4, P5, P6 on a cubic, let E = P1P3 ∩ P5P6 and F = P1P6 ∩ P3P4 and let
D = EF ∩ P4P5, then DA is the tangent at A to the given cubic.

Figure 2: Sketch of Pascal’s thoerem for P1 = P2.

Part (c). Using part (b), given any point P and a conic C, we can construct a tangent at P
to C, as follows: let P1, . . . , P4 be four distinct points on the conic C. Now let E = PP1∩P3P4

and F = PP4 ∩ P1P2 and let D = EF ∩ P2P3, then DP is the tangent at P to C. Thus we
can construct the tangent on a cubic, using only a straight-edge.
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Problem 5.34

Let P,Q be two flex points on a cubic curve C, and suppose that the line L through P,Q
satisfies L · C = P +Q+R. We will show that R is also a flex.

Consider the tangents LP , LQ, LR to C at P,Q,R respectively. Then, by definition of inter-
section cycles and what it means to be a flex,

LP · C = 3P, LQ · C = 3Q, LR · C = 2R + S

where S is some point of C. Hence,

(LP ∪ LQ ∪ LR) · C = 3P + 3Q+ 2R + S = (2P + 2Q+ 2R) + (P +Q+ S) ≥ 2(L · C).

Because L ∩ C consists of the simple points P,Q,R of C, we get by the corollary to the
proposition on Noether’s condition that there exists a curve L′ such that L′ ·C = (LP ∪LQ∪
LR) · C − 2(L · C) = P +Q + S, and we must have that degL′ = 3− 2 = 1. Hence, L′ is a
line passing through P,Q, and so L′ = L. This finally gives that R = S, and so LR ·C = 3R,
that is, R is a flex of C. ■
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