%load_ext autoreload
%autoreload 2
from synthpop.census_helpers import Census
from synthpop import categorizer as cat
import pandas as pd
import numpy as np
import os
pd.set_option('display.max_columns', 500)
c = Census(os.environ["CENSUS"])
income_columns = ['B19001_0%02dE'%i for i in range(1, 18)]
vehicle_columns = ['B08201_0%02dE'%i for i in range(1, 7)]
workers_columns = ['B08202_0%02dE'%i for i in range(1, 6)]
families_columns = ['B11001_001E', 'B11001_002E']
block_group_columns = income_columns + families_columns
tract_columns = vehicle_columns + workers_columns
h_acs = c.block_group_and_tract_query(block_group_columns,
tract_columns, "06", "075",
merge_columns=['tract', 'county', 'state'],
block_group_size_attr="B11001_001E",
tract_size_attr="B08201_001E",
tract="030600")
h_acs
B11001_001E | B11001_002E | B19001_001E | B19001_002E | B19001_003E | B19001_004E | B19001_005E | B19001_006E | B19001_007E | B19001_008E | B19001_009E | B19001_010E | B19001_011E | B19001_012E | B19001_013E | B19001_014E | B19001_015E | B19001_016E | B19001_017E | NAME | block group | county | state | tract | B08201_001E | B08201_002E | B08201_003E | B08201_004E | B08201_005E | B08201_006E | B08202_001E | B08202_002E | B08202_003E | B08202_004E | B08202_005E | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 294 | 183 | 294 | 0 | 4 | 8 | 28 | 0 | 8 | 0 | 0 | 0 | 27 | 10 | 36 | 33 | 28 | 34 | 78 | Block Group 1, Census Tract 306, San Francisco... | 1 | 075 | 06 | 030600 | 294 | 14 | 86 | 125 | 55 | 12 | 294 | 65 | 89 | 118 | 20 |
1 | 226 | 138 | 226 | 0 | 11 | 10 | 9 | 0 | 20 | 0 | 0 | 0 | 9 | 11 | 0 | 25 | 19 | 31 | 81 | Block Group 2, Census Tract 306, San Francisco... | 2 | 075 | 06 | 030600 | 226 | 11 | 66 | 96 | 42 | 9 | 226 | 50 | 68 | 91 | 15 |
2 | 287 | 237 | 287 | 3 | 0 | 0 | 8 | 20 | 22 | 0 | 0 | 21 | 7 | 0 | 12 | 22 | 6 | 89 | 77 | Block Group 3, Census Tract 306, San Francisco... | 3 | 075 | 06 | 030600 | 287 | 14 | 84 | 122 | 53 | 12 | 287 | 64 | 87 | 115 | 19 |
3 rows × 35 columns
population = ['B01001_001E']
sex = ['B01001_002E', 'B01001_026E']
race = ['B02001_0%02dE'%i for i in range(1,11)]
male_age_columns = ['B01001_0%02dE'%i for i in range(3,26)]
female_age_columns = ['B01001_0%02dE'%i for i in range(27,50)]
all_columns = population + sex + race + male_age_columns + female_age_columns
p_acs = c.block_group_query(all_columns, "06", "075", tract="030600")
p_acs
B01001_001E | B01001_002E | B01001_003E | B01001_004E | B01001_005E | B01001_006E | B01001_007E | B01001_008E | B01001_009E | B01001_010E | B01001_011E | B01001_012E | B01001_013E | B01001_014E | B01001_015E | B01001_016E | B01001_017E | B01001_018E | B01001_019E | B01001_020E | B01001_021E | B01001_022E | B01001_023E | B01001_024E | B01001_025E | B01001_026E | B01001_027E | B01001_028E | B01001_029E | B01001_030E | B01001_031E | B01001_032E | B01001_033E | B01001_034E | B01001_035E | B02001_001E | B02001_002E | B02001_003E | B02001_004E | B02001_005E | B02001_006E | B02001_007E | B02001_008E | B02001_009E | B02001_010E | NAME | block group | county | state | tract | B01001_036E | B01001_037E | B01001_038E | B01001_039E | B01001_040E | B01001_041E | B01001_042E | B01001_043E | B01001_044E | B01001_045E | B01001_046E | B01001_047E | B01001_048E | B01001_049E | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 655 | 321 | 8 | 11 | 8 | 0 | 0 | 0 | 0 | 8 | 0 | 48 | 28 | 21 | 51 | 18 | 38 | 4 | 0 | 0 | 39 | 23 | 12 | 0 | 4 | 334 | 46 | 33 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 655 | 423 | 11 | 0 | 187 | 0 | 12 | 22 | 0 | 22 | Block Group 1, Census Tract 306, San Francisco... | 1 | 075 | 06 | 030600 | 6 | 20 | 65 | 41 | 0 | 14 | 7 | 0 | 23 | 0 | 37 | 4 | 0 | 15 |
1 | 528 | 236 | 7 | 17 | 11 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 14 | 53 | 39 | 24 | 12 | 19 | 9 | 0 | 17 | 8 | 2 | 0 | 0 | 292 | 48 | 7 | 0 | 0 | 3 | 0 | 0 | 25 | 0 | 528 | 448 | 9 | 0 | 11 | 0 | 0 | 60 | 0 | 60 | Block Group 2, Census Tract 306, San Francisco... | 2 | 075 | 06 | 030600 | 9 | 40 | 17 | 41 | 10 | 38 | 18 | 0 | 7 | 0 | 9 | 11 | 9 | 0 |
2 | 858 | 493 | 22 | 44 | 0 | 44 | 0 | 0 | 11 | 0 | 6 | 44 | 57 | 50 | 43 | 38 | 38 | 0 | 10 | 21 | 15 | 20 | 10 | 20 | 0 | 365 | 0 | 0 | 49 | 31 | 13 | 0 | 0 | 3 | 0 | 858 | 623 | 11 | 0 | 218 | 0 | 0 | 6 | 0 | 6 | Block Group 3, Census Tract 306, San Francisco... | 3 | 075 | 06 | 030600 | 14 | 0 | 51 | 38 | 66 | 30 | 2 | 8 | 7 | 0 | 20 | 9 | 21 | 3 |
3 rows × 64 columns
puma = c.tract_to_pums("06", "075", "030600")
p_pums = c.download_population_pums("06", puma)
p_pums.head(5)
Unnamed: 0 | serialno | RT | SPORDER | PUMA00 | PUMA10 | ST | ADJINC | PWGTP | AGEP | CIT | CITWP05 | CITWP12 | COW | DDRS | DEAR | DEYE | DOUT | DPHY | DRAT | DRATX | DREM | ENG | FER | GCL | GCM | GCR | HINS1 | HINS2 | HINS3 | HINS4 | HINS5 | HINS6 | HINS7 | INTP | JWMNP | JWRIP | JWTR | LANX | MAR | MARHD | MARHM | MARHT | MARHW | MARHYP05 | MARHYP12 | MIG | MIL | MLPA | MLPB | MLPC | MLPD | MLPE | MLPF | MLPG | MLPH | MLPI | MLPJ | MLPK | NWAB | NWAV | NWLA | NWLK | NWRE | OIP | PAP | RELP | RETP | SCH | SCHG | SCHL | SEMP | SEX | SSIP | SSP | WAGP | WKHP | WKL | WKW | YOEP05 | YOEP12 | ANC | ANC1P05 | ANC1P12 | ANC2P05 | ANC2P12 | DECADE | DIS | DRIVESP | ESP | ESR | HICOV | HISP | INDP | JWAP | JWDP | LANP05 | LANP12 | MIGPUMA00 | MIGPUMA10 | MIGSP05 | MIGSP12 | MSP | NAICSP | NATIVITY | NOP | OC | OCCP02 | OCCP10 | OCCP12 | PAOC | PERNP | PINCP | POBP05 | POBP12 | POVPIP | POWPUMA00 | POWPUMA10 | POWSP05 | POWSP12 | PRIVCOV | PUBCOV | QTRBIR | RAC1P | RAC2P05 | RAC2P12 | RAC3P05 | RAC3P12 | RACAIAN | RACASN | RACBLK | RACNHPI | RACNUM | RACSOR | RACWHT | RC | SFN | SFR | SOCP00 | SOCP10 | SOCP12 | VPS | WAOB | FAGEP | FANCP | FCITP | FCITWP | FCOWP | FDDRSP | FDEARP | FDEYEP | FDOUTP | FDPHYP | FDRATP | FDRATXP | FDREMP | FENGP | FESRP | FFERP | FGCLP | FGCMP | FGCRP | FHINS1P | FHINS2P | FHINS3C | FHINS3P | FHINS4C | FHINS4P | FHINS5C | FHINS5P | FHINS6P | FHINS7P | FHISP | FINDP | FINTP | FJWDP | FJWMNP | FJWRIP | FJWTRP | FLANP | FLANXP | FMARHDP | FMARHMP | FMARHTP | FMARHWP | FMARHYP | FMARP | FMIGP | FMIGSP | FMILPP | FMILSP | FOCCP | FOIP | FPAP | FPOBP | FPOWSP | FRACP | FRELP | FRETP | FSCHGP | FSCHLP | FSCHP | FSEMP | FSEXP | FSSIP | FSSP | FWAGP | FWKHP | FWKLP | FWKWP | FYOEP | PWGTP1 | PWGTP2 | PWGTP3 | PWGTP4 | PWGTP5 | PWGTP6 | PWGTP7 | PWGTP8 | PWGTP9 | PWGTP10 | PWGTP11 | PWGTP12 | PWGTP13 | PWGTP14 | PWGTP15 | PWGTP16 | PWGTP17 | PWGTP18 | PWGTP19 | PWGTP20 | PWGTP21 | PWGTP22 | PWGTP23 | PWGTP24 | PWGTP25 | PWGTP26 | PWGTP27 | PWGTP28 | PWGTP29 | PWGTP30 | PWGTP31 | PWGTP32 | PWGTP33 | PWGTP34 | PWGTP35 | PWGTP36 | PWGTP37 | PWGTP38 | PWGTP39 | PWGTP40 | PWGTP41 | PWGTP42 | PWGTP43 | PWGTP44 | PWGTP45 | PWGTP46 | PWGTP47 | PWGTP48 | PWGTP49 | PWGTP50 | PWGTP51 | PWGTP52 | PWGTP53 | PWGTP54 | PWGTP55 | PWGTP56 | PWGTP57 | PWGTP58 | PWGTP59 | PWGTP60 | PWGTP61 | PWGTP62 | PWGTP63 | PWGTP64 | PWGTP65 | PWGTP66 | PWGTP67 | PWGTP68 | PWGTP69 | PWGTP70 | PWGTP71 | PWGTP72 | PWGTP73 | PWGTP74 | PWGTP75 | PWGTP76 | PWGTP77 | PWGTP78 | PWGTP79 | PWGTP80 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2165691 | 2012000002680 | P | 1 | -9 | 07506 | 06 | 1010207 | 20 | 64 | 1 | NaN | NaN | 2 | 2 | 2 | 2 | 2 | 2 | NaN | NaN | 2 | NaN | NaN | 2 | NaN | NaN | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 10 | NaN | 10 | 2 | 5 | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 3 | 5 | 2 | 2 | 3 | 0 | 0 | 0 | 0 | 1 | NaN | 21 | 0 | 2 | 0 | 0 | 59000 | 24 | 1 | 1 | NaN | NaN | 3 | -9 | 995 | -9 | 999 | NaN | 2 | NaN | NaN | 1 | 1 | 1 | 7870 | 84 | 43 | NaN | NaN | NaN | NaN | NaN | NaN | 6 | 611M1 | 1 | NaN | 0 | N.A. | N.A. | 5860 | 4 | 59000 | 59000 | -9 | 36 | 500 | -9 | 7500 | -9 | 6 | 1 | 2 | 4 | 1 | -9 | 1 | -9 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | NaN | NaN | N.A.// | N.A.// | 439061 | NaN | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NaN | 0 | NaN | 0 | NaN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 21 | 19 | 20 | 6 | 22 | 23 | 31 | 29 | 7 | 6 | 39 | 21 | 6 | 29 | 30 | 22 | 20 | 7 | 22 | 21 | 18 | 17 | 26 | 44 | 18 | 19 | 7 | 5 | 35 | 33 | 7 | 16 | 32 | 7 | 5 | 22 | 16 | 34 | 20 | 14 | 17 | 16 | 22 | 33 | 18 | 17 | 6 | 6 | 41 | 41 | 7 | 17 | 29 | 6 | 6 | 21 | 19 | 30 | 19 | 17 | 18 | 24 | 25 | 6 | 24 | 24 | 32 | 45 | 5 | 7 | 40 | 21 | 6 | 33 | 36 | 18 | 24 | 7 | 16 | 16 |
1 | 2167411 | 2012000009189 | P | 1 | -9 | 07506 | 06 | 1010207 | 16 | 52 | 4 | -9 | 1995 | NaN | 2 | 2 | 1 | 2 | 2 | NaN | NaN | 2 | 3 | NaN | 2 | NaN | NaN | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | NaN | NaN | NaN | 1 | 1 | 2 | 2 | 1 | 2 | -9 | 1992 | 1 | 5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 3 | 5 | 3 | 3 | 3 | 10000 | 0 | 0 | 0 | 1 | NaN | 16 | 0 | 1 | 0 | 0 | 0 | NaN | 3 | NaN | -9 | 1989 | 4 | -9 | 999 | -9 | 999 | 5 | 1 | NaN | NaN | 6 | 1 | 1 | NaN | NaN | NaN | -9 | 708 | NaN | NaN | NaN | NaN | 1 | NaN | 2 | NaN | 0 | NaN | NaN | NaN | NaN | 0 | 10000 | -9 | 207 | 43 | NaN | NaN | NaN | NaN | 1 | 2 | 3 | 6 | -9 | 43 | -9 | 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | NaN | 0 | NaN | 0 | NaN | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 19 | 11 | 23 | 20 | 7 | 16 | 11 | 7 | 20 | 4 | 21 | 14 | 16 | 27 | 11 | 20 | 19 | 15 | 18 | 26 | 13 | 33 | 4 | 4 | 50 | 16 | 12 | 40 | 25 | 37 | 19 | 17 | 10 | 3 | 12 | 3 | 11 | 14 | 5 | 5 | 16 | 4 | 28 | 24 | 6 | 19 | 14 | 5 | 17 | 3 | 17 | 15 | 12 | 27 | 13 | 33 | 15 | 19 | 47 | 18 | 22 | 28 | 6 | 5 | 28 | 12 | 12 | 25 | 21 | 15 | 12 | 12 | 15 | 5 | 14 | 7 | 15 | 13 | 7 | 4 |
2 | 2167412 | 2012000009189 | P | 2 | -9 | 07506 | 06 | 1010207 | 13 | 45 | 4 | -9 | 1998 | 3 | 2 | 2 | 1 | 2 | 2 | NaN | NaN | 2 | 3 | 2 | 2 | NaN | NaN | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | NaN | NaN | NaN | 1 | 1 | 2 | 2 | 1 | 2 | -9 | 1992 | 1 | 5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 3 | 5 | 3 | 3 | 3 | 0 | 0 | 1 | 0 | 1 | NaN | 16 | 0 | 2 | 0 | 0 | 0 | NaN | 2 | NaN | -9 | 1992 | 4 | -9 | 999 | -9 | 999 | 6 | 1 | NaN | NaN | 6 | 1 | 1 | 8370 | NaN | NaN | -9 | 708 | NaN | NaN | NaN | NaN | 1 | 6241 | 2 | NaN | 0 | N.A. | N.A. | 4610 | 2 | 0 | 0 | -9 | 207 | 43 | NaN | NaN | NaN | NaN | 1 | 2 | 2 | 6 | -9 | 43 | -9 | 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | NaN | NaN | N.A.// | N.A.// | 399021 | NaN | 4 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | NaN | 0 | NaN | 0 | NaN | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 11 | 6 | 25 | 18 | 4 | 15 | 16 | 5 | 12 | 5 | 14 | 13 | 20 | 25 | 9 | 19 | 13 | 16 | 19 | 23 | 12 | 19 | 4 | 4 | 21 | 12 | 12 | 20 | 16 | 21 | 14 | 14 | 11 | 4 | 15 | 3 | 11 | 17 | 4 | 3 | 13 | 5 | 19 | 21 | 4 | 12 | 14 | 4 | 11 | 3 | 19 | 13 | 17 | 25 | 12 | 16 | 12 | 15 | 19 | 27 | 16 | 24 | 5 | 4 | 24 | 12 | 11 | 19 | 13 | 24 | 11 | 16 | 14 | 3 | 15 | 3 | 15 | 12 | 3 | 4 |
3 | 2167413 | 2012000009189 | P | 3 | -9 | 07506 | 06 | 1010207 | 14 | 10 | 1 | NaN | NaN | NaN | 2 | 2 | 2 | NaN | 2 | NaN | NaN | 2 | NaN | NaN | NaN | NaN | NaN | 2 | 2 | 2 | 1 | 2 | 2 | 2 | NaN | NaN | NaN | NaN | 2 | 5 | NaN | NaN | NaN | NaN | NaN | NaN | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2 | NaN | 1 | NaN | 7 | NaN | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 4 | -9 | 999 | -9 | 999 | NaN | 2 | NaN | 4 | NaN | 1 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 4 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | -9 | 6 | 43 | NaN | NaN | NaN | NaN | 2 | 1 | 4 | 6 | -9 | 43 | -9 | 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NaN | 0 | 0 | 0 | NaN | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 4 | 24 | 25 | 5 | 12 | 14 | 6 | 14 | 4 | 10 | 12 | 20 | 28 | 16 | 23 | 18 | 18 | 22 | 23 | 18 | 23 | 4 | 3 | 23 | 14 | 15 | 25 | 12 | 19 | 14 | 19 | 13 | 3 | 16 | 4 | 16 | 17 | 4 | 5 | 11 | 5 | 21 | 23 | 6 | 23 | 13 | 4 | 15 | 4 | 19 | 16 | 13 | 26 | 11 | 21 | 13 | 18 | 22 | 23 | 12 | 26 | 5 | 4 | 23 | 14 | 13 | 21 | 15 | 22 | 15 | 13 | 16 | 5 | 12 | 6 | 12 | 12 | 3 | 3 |
4 | 2167414 | 2012000009189 | P | 4 | -9 | 07506 | 06 | 1010207 | 15 | 8 | 1 | NaN | NaN | NaN | 2 | 2 | 2 | NaN | 2 | NaN | NaN | 2 | NaN | NaN | NaN | NaN | NaN | 2 | 2 | 2 | 1 | 2 | 2 | 2 | NaN | NaN | NaN | NaN | 2 | 5 | NaN | NaN | NaN | NaN | NaN | NaN | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2 | NaN | 2 | 5 | 6 | NaN | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 4 | -9 | 999 | -9 | 999 | NaN | 2 | NaN | 4 | NaN | 1 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 4 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | -9 | 6 | 43 | NaN | NaN | NaN | NaN | 2 | 1 | 1 | 6 | -9 | 43 | -9 | 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | NaN | 1 | 0 | 1 | NaN | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 4 | 25 | 24 | 5 | 11 | 13 | 6 | 14 | 4 | 11 | 11 | 20 | 28 | 15 | 23 | 18 | 18 | 22 | 23 | 18 | 23 | 4 | 4 | 23 | 14 | 16 | 25 | 12 | 19 | 15 | 19 | 13 | 4 | 16 | 3 | 16 | 17 | 4 | 5 | 12 | 7 | 21 | 23 | 5 | 23 | 13 | 5 | 16 | 3 | 20 | 16 | 13 | 26 | 12 | 22 | 13 | 17 | 22 | 22 | 13 | 27 | 5 | 3 | 23 | 14 | 13 | 20 | 14 | 22 | 14 | 13 | 17 | 5 | 13 | 6 | 12 | 13 | 4 | 3 |
5 rows × 291 columns
h_pums = c.download_household_pums("06", puma)
h_pums.head(5)
Unnamed: 0 | serialno | RT | DIVISION | PUMA00 | PUMA10 | REGION | ST | ADJHSG | ADJINC | WGTP | NP | TYPE | ACR | AGS | BATH | BDSP | BLD | BUS | CONP | ELEP | FS | FULP | GASP | HFL | INSP | MHP | MRGI | MRGP | MRGT | MRGX | REFR | RMSP | RNTM | RNTP | RWAT | SINK | SMP | STOV | TEL | TEN | TOIL | VACS | VALP | VEH | WATP | YBL | FES | FINCP | FPARC | GRNTP | GRPIP | HHL | HHT | HINCP | HUGCL | HUPAC | HUPAOC | HUPARC | KIT | LNGI | MULTG | MV | NOC | NPF | NPP | NR | NRC | OCPIP | PARTNER | PLM | PSF | R18 | R60 | R65 | RESMODE | SMOCP | SMX | SRNT | SVAL | TAXP | WIF | WKEXREL | WORKSTAT | FACRP | FAGSP | FBATHP | FBDSP | FBLDP | FBUSP | FCONP | FELEP | FFSP | FFULP | FGASP | FHFLP | FINSP | FKITP | FMHP | FMRGIP | FMRGP | FMRGTP | FMRGXP | FMVP | FPLMP | FREFRP | FRMSP | FRNTMP | FRNTP | FRWATP | FSINKP | FSMP | FSMXHP | FSMXSP | FSTOVP | FTAXP | FTELP | FTENP | FTOILP | FVACSP | FVALP | FVEHP | FWATP | FYBLP | WGTP1 | WGTP2 | WGTP3 | WGTP4 | WGTP5 | WGTP6 | WGTP7 | WGTP8 | WGTP9 | WGTP10 | WGTP11 | WGTP12 | WGTP13 | WGTP14 | WGTP15 | WGTP16 | WGTP17 | WGTP18 | WGTP19 | WGTP20 | WGTP21 | WGTP22 | WGTP23 | WGTP24 | WGTP25 | WGTP26 | WGTP27 | WGTP28 | WGTP29 | WGTP30 | WGTP31 | WGTP32 | WGTP33 | WGTP34 | WGTP35 | WGTP36 | WGTP37 | WGTP38 | WGTP39 | WGTP40 | WGTP41 | WGTP42 | WGTP43 | WGTP44 | WGTP45 | WGTP46 | WGTP47 | WGTP48 | WGTP49 | WGTP50 | WGTP51 | WGTP52 | WGTP53 | WGTP54 | WGTP55 | WGTP56 | WGTP57 | WGTP58 | WGTP59 | WGTP60 | WGTP61 | WGTP62 | WGTP63 | WGTP64 | WGTP65 | WGTP66 | WGTP67 | WGTP68 | WGTP69 | WGTP70 | WGTP71 | WGTP72 | WGTP73 | WGTP74 | WGTP75 | WGTP76 | WGTP77 | WGTP78 | WGTP79 | WGTP80 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 940390 | 2012000002680 | H | 9 | -9 | 07506 | 4 | 06 | 1000000 | 1010207 | 21 | 1 | 1 | 1 | NaN | 1 | 2 | 3 | 2 | 0 | 60 | 2 | 2 | 4 | 9 | 200 | NaN | 2 | 350 | 2 | 1 | 1 | 5 | NaN | NaN | 1 | 1 | NaN | 1 | 1 | 1 | 1 | NaN | 500000 | 1 | 430 | 1 | NaN | NaN | NaN | NaN | NaN | 1 | 6 | 59000 | 0 | 4 | 4 | 4 | 1 | 1 | 1 | 6 | 0 | NaN | 0 | 0 | 0 | 13 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 634 | 3 | 0 | 1 | 32 | NaN | NaN | NaN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 19 | 21 | 7 | 22 | 23 | 31 | 29 | 6 | 5 | 39 | 21 | 6 | 29 | 30 | 22 | 20 | 6 | 22 | 21 | 17 | 17 | 26 | 44 | 18 | 20 | 7 | 5 | 35 | 33 | 8 | 17 | 32 | 7 | 5 | 23 | 16 | 35 | 20 | 15 | 17 | 16 | 22 | 34 | 18 | 17 | 6 | 6 | 41 | 41 | 6 | 17 | 30 | 6 | 6 | 21 | 20 | 30 | 19 | 17 | 18 | 25 | 25 | 6 | 24 | 24 | 32 | 45 | 5 | 7 | 39 | 21 | 6 | 33 | 36 | 18 | 24 | 7 | 17 | 16 |
1 | 941064 | 2012000009189 | H | 9 | -9 | 07506 | 4 | 06 | 1000000 | 1010207 | 15 | 4 | 1 | NaN | NaN | 1 | 5 | 4 | NaN | 0 | 50 | 2 | 2 | 50 | 1 | 660 | NaN | 2 | 490 | 2 | 1 | 1 | 7 | NaN | NaN | 1 | 1 | 630 | 1 | 1 | 1 | 1 | NaN | 40000 | 2 | 2000 | 1 | 4 | 10000 | 2 | NaN | NaN | 4 | 1 | 10000 | 0 | 2 | 2 | 2 | 1 | 2 | 1 | 5 | 2 | 4 | 0 | 0 | 2 | 101 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1534 | 2 | 0 | 0 | 23 | 0 | 9 | 9 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 11 | 23 | 20 | 7 | 16 | 11 | 7 | 20 | 5 | 21 | 14 | 15 | 27 | 11 | 20 | 18 | 15 | 18 | 26 | 13 | 33 | 4 | 4 | 50 | 16 | 13 | 40 | 25 | 37 | 19 | 17 | 10 | 4 | 13 | 3 | 11 | 14 | 6 | 4 | 16 | 4 | 28 | 24 | 6 | 19 | 15 | 5 | 18 | 3 | 17 | 15 | 12 | 27 | 13 | 33 | 14 | 19 | 47 | 18 | 22 | 28 | 5 | 6 | 28 | 13 | 12 | 26 | 21 | 15 | 12 | 12 | 15 | 5 | 13 | 7 | 15 | 13 | 7 | 5 |
2 | 941824 | 2012000016466 | H | 9 | -9 | 07506 | 4 | 06 | 1000000 | 1010207 | 15 | 3 | 1 | 1 | NaN | 1 | 2 | 2 | 2 | 0 | 10 | 2 | 2 | 1 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 4 | 2 | 2000 | 1 | 1 | NaN | 1 | 1 | 3 | 1 | NaN | NaN | 1 | 1 | 2 | 7 | 30000 | 2 | 2010 | 80 | 1 | 3 | 30000 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 0 | 0 | 2 | NaN | 0 | 1 | 0 | 1 | 0 | 0 | 1 | NaN | NaN | 1 | 0 | NaN | 1 | 13 | 13 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 5 | 32 | 14 | 5 | 21 | 21 | 12 | 16 | 6 | 15 | 19 | 20 | 18 | 5 | 13 | 19 | 23 | 25 | 11 | 23 | 21 | 5 | 22 | 24 | 5 | 8 | 12 | 17 | 35 | 24 | 15 | 17 | 10 | 14 | 13 | 16 | 5 | 5 | 18 | 3 | 6 | 27 | 21 | 5 | 25 | 28 | 14 | 10 | 7 | 13 | 15 | 17 | 21 | 4 | 14 | 14 | 22 | 22 | 15 | 31 | 26 | 5 | 17 | 34 | 7 | 4 | 17 | 20 | 24 | 12 | 12 | 14 | 14 | 26 | 18 | 13 | 4 | 5 | 16 |
3 | 941918 | 2012000017340 | H | 9 | -9 | 07506 | 4 | 06 | 1000000 | 1010207 | 10 | 4 | 1 | 1 | NaN | 1 | 3 | 3 | 2 | 0 | 100 | 2 | 1000 | 30 | 3 | 500 | NaN | 2 | 3000 | 2 | 1 | 1 | 4 | NaN | NaN | 1 | 1 | NaN | 1 | 1 | 1 | 1 | NaN | 500000 | 1 | 1200 | 7 | 5 | 60000 | 4 | NaN | NaN | 4 | 2 | 60000 | 0 | 4 | 4 | 4 | 1 | 1 | 1 | 4 | 0 | 4 | 0 | 0 | 0 | 79 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 3938 | 3 | 0 | 1 | 65 | 2 | 12 | 11 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 8 | 3 | 8 | 4 | 6 | 8 | 12 | 17 | 7 | 20 | 11 | 11 | 18 | 14 | 4 | 30 | 23 | 4 | 20 | 10 | 10 | 19 | 9 | 15 | 6 | 12 | 10 | 3 | 12 | 4 | 11 | 8 | 4 | 9 | 18 | 5 | 3 | 18 | 4 | 12 | 10 | 4 | 13 | 3 | 12 | 13 | 10 | 28 | 13 | 20 | 16 | 11 | 17 | 11 | 3 | 18 | 15 | 3 | 13 | 9 | 8 | 14 | 12 | 17 | 10 | 10 | 9 | 5 | 8 | 3 | 13 | 11 | 2 | 9 | 19 | 2 | 3 | 13 | 3 |
4 | 942803 | 2012000025664 | H | 9 | -9 | 07506 | 4 | 06 | 1000000 | 1010207 | 71 | 5 | 1 | 1 | NaN | 1 | 3 | 3 | 2 | 0 | 50 | 2 | 2 | 3 | 3 | 200 | NaN | 2 | 680 | 2 | 1 | 1 | 6 | NaN | NaN | 1 | 1 | NaN | 1 | 1 | 1 | 1 | NaN | 500000 | 2 | 900 | 4 | 7 | 73500 | 4 | NaN | NaN | 1 | 3 | 73500 | 0 | 4 | 4 | 4 | 1 | 1 | 2 | 7 | 0 | 5 | 0 | 0 | 0 | 16 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 989 | 3 | 0 | 1 | 32 | 3 | 13 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 33 | 23 | 78 | 66 | 19 | 99 | 88 | 97 | 68 | 29 | 80 | 72 | 50 | 74 | 36 | 57 | 82 | 101 | 77 | 75 | 69 | 93 | 23 | 131 | 105 | 27 | 25 | 83 | 69 | 93 | 65 | 57 | 92 | 74 | 108 | 89 | 128 | 38 | 17 | 55 | 102 | 103 | 44 | 61 | 109 | 29 | 31 | 69 | 66 | 94 | 73 | 66 | 77 | 62 | 104 | 82 | 78 | 38 | 30 | 87 | 37 | 21 | 85 | 63 | 25 | 66 | 93 | 80 | 55 | 29 | 90 | 74 | 86 | 63 | 19 | 70 | 50 | 100 | 115 | 70 |
5 rows × 204 columns
h_acs_cat = cat.categorize(h_acs, {
("households", "total"): "B11001_001E",
("children", "yes"): "B11001_002E",
("children", "no"): "B11001_001E - B11001_002E",
("income", "lt35"): "B19001_002E + B19001_003E + B19001_004E + "
"B19001_005E + B19001_006E + B19001_007E",
("income", "gt35-lt100"): "B19001_008E + B19001_009E + "
"B19001_010E + B19001_011E + B19001_012E"
"+ B19001_013E",
("income", "gt100"): "B19001_014E + B19001_015E + B19001_016E"
"+ B19001_017E",
("cars", "none"): "B08201_002E",
("cars", "one"): "B08201_003E",
("cars", "two or more"): "B08201_004E + B08201_005E + B08201_006E",
("workers", "none"): "B08202_002E",
("workers", "one"): "B08202_003E",
("workers", "two or more"): "B08202_004E + B08202_005E"
}, index_cols=['NAME'])
h_acs_cat
cat_name | cars | children | households | income | workers | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cat_value | none | one | two or more | no | yes | total | gt100 | gt35-lt100 | lt35 | none | one | two or more |
NAME | ||||||||||||
Block Group 1, Census Tract 306, San Francisco County, California | 14 | 86 | 192 | 111 | 183 | 294 | 173 | 73 | 48 | 65 | 89 | 138 |
Block Group 2, Census Tract 306, San Francisco County, California | 11 | 66 | 147 | 88 | 138 | 226 | 156 | 20 | 50 | 50 | 68 | 106 |
Block Group 3, Census Tract 306, San Francisco County, California | 14 | 84 | 187 | 50 | 237 | 287 | 194 | 40 | 53 | 64 | 87 | 134 |
3 rows × 12 columns
assert np.all(cat.sum_accross_category(h_acs_cat) < 2)
p_acs_cat = cat.categorize(p_acs, {
("population", "total"): "B01001_001E",
("age", "19 and under"): "B01001_003E + B01001_004E + B01001_005E + "
"B01001_006E + B01001_007E + B01001_027E + "
"B01001_028E + B01001_029E + B01001_030E + "
"B01001_031E",
("age", "20 to 35"): "B01001_008E + B01001_009E + B01001_010E + "
"B01001_011E + B01001_012E + B01001_032E + "
"B01001_033E + B01001_034E + B01001_035E + "
"B01001_036E",
("age", "35 to 60"): "B01001_013E + B01001_014E + B01001_015E + "
"B01001_016E + B01001_017E + B01001_037E + "
"B01001_038E + B01001_039E + B01001_040E + "
"B01001_041E",
("age", "above 60"): "B01001_018E + B01001_019E + B01001_020E + "
"B01001_021E + B01001_022E + B01001_023E + "
"B01001_024E + B01001_025E + B01001_042E + "
"B01001_043E + B01001_044E + B01001_045E + "
"B01001_046E + B01001_047E + B01001_048E + "
"B01001_049E",
("race", "white"): "B02001_002E",
("race", "black"): "B02001_003E",
("race", "asian"): "B02001_005E",
("race", "other"): "B02001_004E + B02001_006E + B02001_007E + "
"B02001_008E",
("sex", "male"): "B01001_002E",
("sex", "female"): "B01001_026E"
}, index_cols=['NAME'])
p_acs_cat
cat_name | age | population | race | sex | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
cat_value | 19 and under | 20 to 35 | 35 to 60 | above 60 | total | asian | black | other | white | female | male |
NAME | |||||||||||
Block Group 1, Census Tract 306, San Francisco County, California | 129 | 62 | 296 | 168 | 655 | 187 | 11 | 34 | 423 | 334 | 321 |
Block Group 2, Census Tract 306, San Francisco County, California | 97 | 34 | 288 | 109 | 528 | 11 | 9 | 60 | 448 | 292 | 236 |
Block Group 3, Census Tract 306, San Francisco County, California | 203 | 78 | 411 | 166 | 858 | 218 | 11 | 6 | 623 | 365 | 493 |
3 rows × 11 columns
assert np.all(cat.sum_accross_category(p_acs_cat) < 2)
p_acs_cat.iloc[0].transpose()
cat_name cat_value age 19 and under 129 20 to 35 62 35 to 60 296 above 60 168 population total 655 race asian 187 black 11 other 34 white 423 sex female 334 male 321 Name: Block Group 1, Census Tract 306, San Francisco County, California, dtype: int64
def age_cat(r):
if r.AGEP <= 19: return "19 and under"
elif r.AGEP <= 35: return "20 to 35"
elif r.AGEP <= 60: return "35 to 60"
return "above 60"
def race_cat(r):
if r.RAC1P == 1: return "white"
elif r.RAC1P == 2: return "black"
elif r.RAC1P == 6: return "asian"
return "other"
def sex_cat(r):
if r.SEX == 1: return "male"
return "female"
_, jd_persons = cat.joint_distribution(
p_pums,
cat.category_combinations(p_acs_cat.columns),
{"age": age_cat, "race": race_cat, "sex": sex_cat}
)
jd_persons
id | frequency | |||
---|---|---|---|---|
age | race | sex | ||
19 and under | asian | female | 0 | 37 |
male | 1 | 44 | ||
black | female | 2 | 1 | |
male | 3 | 5 | ||
other | female | 4 | 21 | |
male | 5 | 25 | ||
white | female | 6 | 42 | |
male | 7 | 35 | ||
20 to 35 | asian | female | 8 | 42 |
male | 9 | 47 | ||
black | female | 10 | 6 | |
male | 11 | 6 | ||
other | female | 12 | 12 | |
male | 13 | 13 | ||
white | female | 14 | 44 | |
male | 15 | 43 | ||
35 to 60 | asian | female | 16 | 96 |
male | 17 | 81 | ||
black | female | 18 | 10 | |
male | 19 | 7 | ||
other | female | 20 | 22 | |
male | 21 | 17 | ||
white | female | 22 | 68 | |
male | 23 | 88 | ||
above 60 | asian | female | 24 | 56 |
male | 25 | 38 | ||
black | female | 26 | 14 | |
male | 27 | 8 | ||
other | female | 28 | 7 | |
male | 29 | 5 | ||
white | female | 30 | 64 | |
male | 31 | 59 |
32 rows × 2 columns
def cars_cat(r):
if r.VEH == 0: return "none"
elif r.VEH == 1: return "one"
return "two or more"
def children_cat(r):
if r.NOC > 0: return "yes"
return "no"
def income_cat(r):
if r.FINCP > 100000: return "gt100"
elif r.FINCP > 35000: return "gt35-lt100"
return "lt35"
def workers_cat(r):
if r.WIF == 3: return "two or more"
elif r.WIF == 2: return "two or more"
elif r.WIF == 1: return "one"
return "none"
_, jd_households = cat.joint_distribution(
h_pums,
cat.category_combinations(h_acs_cat.columns),
{"cars": cars_cat, "children": children_cat,
"income": income_cat, "workers": workers_cat}
)
jd_households
id | frequency | ||||
---|---|---|---|---|---|
cars | workers | children | income | ||
none | none | no | gt100 | 0 | 0 |
gt35-lt100 | 1 | 1 | |||
lt35 | 2 | 37 | |||
yes | gt100 | 3 | 0 | ||
gt35-lt100 | 4 | 0 | |||
lt35 | 5 | 0 | |||
one | no | gt100 | 6 | 0 | |
gt35-lt100 | 7 | 2 | |||
lt35 | 8 | 2 | |||
yes | gt100 | 9 | 0 | ||
gt35-lt100 | 10 | 1 | |||
lt35 | 11 | 0 | |||
two or more | no | gt100 | 12 | 2 | |
gt35-lt100 | 13 | 5 | |||
lt35 | 14 | 0 | |||
yes | gt100 | 15 | 0 | ||
gt35-lt100 | 16 | 1 | |||
lt35 | 17 | 0 | |||
one | none | no | gt100 | 18 | 1 |
gt35-lt100 | 19 | 7 | |||
lt35 | 20 | 81 | |||
yes | gt100 | 21 | 0 | ||
gt35-lt100 | 22 | 0 | |||
lt35 | 23 | 0 | |||
one | no | gt100 | 24 | 5 | |
gt35-lt100 | 25 | 6 | |||
lt35 | 26 | 2 | |||
yes | gt100 | 27 | 3 | ||
gt35-lt100 | 28 | 6 | |||
lt35 | 29 | 8 | |||
two or more | no | gt100 | 30 | 8 | |
gt35-lt100 | 31 | 10 | |||
lt35 | 32 | 1 | |||
yes | gt100 | 33 | 6 | ||
gt35-lt100 | 34 | 7 | |||
lt35 | 35 | 1 | |||
two or more | none | no | gt100 | 36 | 2 |
gt35-lt100 | 37 | 8 | |||
lt35 | 38 | 91 | |||
yes | gt100 | 39 | 0 | ||
gt35-lt100 | 40 | 0 | |||
lt35 | 41 | 1 | |||
one | no | gt100 | 42 | 5 | |
gt35-lt100 | 43 | 8 | |||
lt35 | 44 | 5 | |||
yes | gt100 | 45 | 6 | ||
gt35-lt100 | 46 | 6 | |||
lt35 | 47 | 0 | |||
two or more | no | gt100 | 48 | 36 | |
gt35-lt100 | 49 | 22 | |||
lt35 | 50 | 5 | |||
yes | gt100 | 51 | 36 | ||
gt35-lt100 | 52 | 10 | |||
lt35 | 53 | 0 |
54 rows × 2 columns
"TBD"
'TBD'