%load_ext autoreload
%autoreload 2
from synthpop.recipes.starter2 import Starter
from synthpop.synthesizer import synthesize_all, enable_logging
import os
import pandas as pd
#enable_logging()
def synthesize_counties(counties):
for county in counties:
starter = Starter(os.environ["CENSUS"], "CA", county)
synthesize_all(starter)
%time hh = synthesize_counties(["Santa Clara County", "Solano County", "San Mateo County", "Marin County", "San Francisco County", "Napa County", "Sonoma County", "Contra Costa County", "Alameda County"])
--------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) <timed exec> in <module>() <ipython-input-2-ac36fb532fea> in synthesize_counties(counties) 1 def synthesize_counties(counties): 2 for county in counties: ----> 3 starter = Starter(os.environ["CENSUS"], "CA", county) 4 synthesize_all(starter) 5 get_ipython().run_line_magic('time', 'hh = synthesize_counties(["Santa Clara County", "Solano County", "San Mateo County", "Marin County", "San Francisco County", "Napa County", "Sonoma County", "Contra Costa County", "Alameda County"])') c:\users\juan\documents\github\synthpop\synthpop\recipes\starter2.py in __init__(self, key, state, county, tract) 69 block_group_size_attr="B11005_001E", 70 tract_size_attr="B08201_001E", ---> 71 tract=tract) 72 self.h_acs = h_acs 73 c:\users\juan\documents\github\synthpop\synthpop\census_helpers.py in block_group_and_tract_query(self, block_group_columns, tract_columns, state, county, merge_columns, block_group_size_attr, tract_size_attr, tract, year) 110 tract_size_attr, tract=None, year=2016): 111 df2 = self.tract_query(tract_columns, state, county, tract=tract, --> 112 year=year) 113 df1 = self.block_group_query(block_group_columns, state, county, 114 tract=tract, year=year) c:\users\juan\documents\github\synthpop\synthpop\census_helpers.py in tract_query(self, census_columns, state, county, tract, year) 63 return self._query(census_columns, state, county, 64 forstr="tract:%s" % tract, ---> 65 year=year) 66 67 def _query(self, census_columns, state, county, forstr, c:\users\juan\documents\github\synthpop\synthpop\census_helpers.py in _query(self, census_columns, state, county, forstr, tract, year) 69 c = self.c 70 ---> 71 state, county = self.try_fips_lookup(state, county) 72 73 if tract is None: c:\users\juan\documents\github\synthpop\synthpop\census_helpers.py in try_fips_lookup(self, state, county) 199 200 def try_fips_lookup(self, state, county=None): --> 201 df = self._get_fips_lookup() 202 203 if county is None: c:\users\juan\documents\github\synthpop\synthpop\census_helpers.py in _get_fips_lookup(self) 143 }, 144 index_col=["State", --> 145 "County Name"] 146 ) 147 del self.fips_df["ANSI Cl"] ~\Anaconda3\envs\synpop_py3\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision) 707 skip_blank_lines=skip_blank_lines) 708 --> 709 return _read(filepath_or_buffer, kwds) 710 711 parser_f.__name__ = name ~\Anaconda3\envs\synpop_py3\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds) 431 compression = _infer_compression(filepath_or_buffer, compression) 432 filepath_or_buffer, _, compression = get_filepath_or_buffer( --> 433 filepath_or_buffer, encoding, compression) 434 kwds['compression'] = compression 435 ~\Anaconda3\envs\synpop_py3\lib\site-packages\pandas\io\common.py in get_filepath_or_buffer(filepath_or_buffer, encoding, compression) 188 189 if _is_url(filepath_or_buffer): --> 190 req = _urlopen(filepath_or_buffer) 191 content_encoding = req.headers.get('Content-Encoding', None) 192 if content_encoding == 'gzip': ~\Anaconda3\envs\synpop_py3\lib\urllib\request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context) 221 else: 222 opener = _opener --> 223 return opener.open(url, data, timeout) 224 225 def install_opener(opener): ~\Anaconda3\envs\synpop_py3\lib\urllib\request.py in open(self, fullurl, data, timeout) 524 req = meth(req) 525 --> 526 response = self._open(req, data) 527 528 # post-process response ~\Anaconda3\envs\synpop_py3\lib\urllib\request.py in _open(self, req, data) 542 protocol = req.type 543 result = self._call_chain(self.handle_open, protocol, protocol + --> 544 '_open', req) 545 if result: 546 return result ~\Anaconda3\envs\synpop_py3\lib\urllib\request.py in _call_chain(self, chain, kind, meth_name, *args) 502 for handler in handlers: 503 func = getattr(handler, meth_name) --> 504 result = func(*args) 505 if result is not None: 506 return result ~\Anaconda3\envs\synpop_py3\lib\urllib\request.py in https_open(self, req) 1359 def https_open(self, req): 1360 return self.do_open(http.client.HTTPSConnection, req, -> 1361 context=self._context, check_hostname=self._check_hostname) 1362 1363 https_request = AbstractHTTPHandler.do_request_ ~\Anaconda3\envs\synpop_py3\lib\urllib\request.py in do_open(self, http_class, req, **http_conn_args) 1319 except OSError as err: # timeout error 1320 raise URLError(err) -> 1321 r = h.getresponse() 1322 except: 1323 h.close() ~\Anaconda3\envs\synpop_py3\lib\http\client.py in getresponse(self) 1329 try: 1330 try: -> 1331 response.begin() 1332 except ConnectionError: 1333 self.close() ~\Anaconda3\envs\synpop_py3\lib\http\client.py in begin(self) 295 # read until we get a non-100 response 296 while True: --> 297 version, status, reason = self._read_status() 298 if status != CONTINUE: 299 break ~\Anaconda3\envs\synpop_py3\lib\http\client.py in _read_status(self) 256 257 def _read_status(self): --> 258 line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") 259 if len(line) > _MAXLINE: 260 raise LineTooLong("status line") ~\Anaconda3\envs\synpop_py3\lib\socket.py in readinto(self, b) 584 while True: 585 try: --> 586 return self._sock.recv_into(b) 587 except timeout: 588 self._timeout_occurred = True ~\Anaconda3\envs\synpop_py3\lib\ssl.py in recv_into(self, buffer, nbytes, flags) 1007 "non-zero flags not allowed in calls to recv_into() on %s" % 1008 self.__class__) -> 1009 return self.read(nbytes, buffer) 1010 else: 1011 return socket.recv_into(self, buffer, nbytes, flags) ~\Anaconda3\envs\synpop_py3\lib\ssl.py in read(self, len, buffer) 869 raise ValueError("Read on closed or unwrapped SSL socket.") 870 try: --> 871 return self._sslobj.read(len, buffer) 872 except SSLError as x: 873 if x.args[0] == SSL_ERROR_EOF and self.suppress_ragged_eofs: ~\Anaconda3\envs\synpop_py3\lib\ssl.py in read(self, len, buffer) 629 """ 630 if buffer is not None: --> 631 v = self._sslobj.read(len, buffer) 632 else: 633 v = self._sslobj.read(len) KeyboardInterrupt:
starter = Starter(os.environ["CENSUS"], "CA", "Santa Clara County")
ind = pd.Series(["06", "085", "508203", "3"], index=["state", "county", "tract", "block group"])
synthesize_all(starter, indexes=[ind])
Synthesizing at geog level: 'block_group' (number of geographies is 1075) Synthesizing geog id: state 06 county 085 tract 508203 block group 3 dtype: object
c:\users\juan\documents\github\synthpop\synthpop\ipu\ipu.py:190: RuntimeWarning: divide by zero encountered in double_scalars adj = constraint / (column * weights).sum()
Drawing 770 households
( serialno RT puma00 puma10 NP TYPE BLD TEN VEH HINCP \ 0 2009001096088 H 2702 -9 4 1 3.0 3.0 0.0 226400.0 1 2009000797707 H 2702 -9 1 1 6.0 3.0 1.0 120000.0 2 2009000776447 H 2702 -9 1 1 9.0 3.0 1.0 187000.0 3 2009000034504 H 2702 -9 1 1 7.0 3.0 1.0 416000.0 4 2012000837531 H -9 8502 1 1 8.0 3.0 1.0 57000.0 5 2013000119247 H -9 8502 1 1 3.0 1.0 1.0 92000.0 6 2010000191477 H 2702 -9 1 1 3.0 4.0 1.0 390.0 7 2013000718037 H -9 8502 1 1 8.0 3.0 1.0 15500.0 8 2010000285540 H 2702 -9 2 1 5.0 3.0 1.0 0.0 9 2010000337473 H 2702 -9 4 1 8.0 3.0 1.0 32900.0 10 2010001167857 H 2702 -9 3 1 5.0 3.0 1.0 81200.0 11 2009001316324 H 2702 -9 2 1 5.0 3.0 1.0 4200.0 12 2009001316324 H 2702 -9 2 1 5.0 3.0 1.0 4200.0 13 2010000309566 H 2702 -9 3 1 3.0 3.0 2.0 110990.0 14 2009000875809 H 2702 -9 4 1 2.0 1.0 5.0 202000.0 15 2009000847427 H 2702 -9 3 1 2.0 1.0 3.0 192000.0 16 2009000842508 H 2702 -9 2 1 2.0 2.0 2.0 168000.0 17 2009001302282 H 2702 -9 2 1 3.0 2.0 2.0 150000.0 18 2009000938159 H 2702 -9 2 1 9.0 3.0 2.0 169500.0 19 2009000938159 H 2702 -9 2 1 9.0 3.0 2.0 169500.0 20 2009001025363 H 2702 -9 2 1 2.0 2.0 2.0 182000.0 21 2009001025363 H 2702 -9 2 1 2.0 2.0 2.0 182000.0 22 2010001128154 H 2702 -9 2 1 4.0 3.0 2.0 170000.0 23 2010001128154 H 2702 -9 2 1 4.0 3.0 2.0 170000.0 24 2010001128154 H 2702 -9 2 1 4.0 3.0 2.0 170000.0 25 2010001128154 H 2702 -9 2 1 4.0 3.0 2.0 170000.0 26 2012000917686 H -9 8502 2 1 2.0 1.0 2.0 280000.0 27 2012000917686 H -9 8502 2 1 2.0 1.0 2.0 280000.0 28 2012000917686 H -9 8502 2 1 2.0 1.0 2.0 280000.0 29 2012000917686 H -9 8502 2 1 2.0 1.0 2.0 280000.0 .. ... .. ... ... .. ... ... ... ... ... 740 2009000257552 H 2702 -9 3 1 5.0 3.0 2.0 156000.0 741 2010000224153 H 2702 -9 2 1 9.0 3.0 2.0 69000.0 742 2011000027489 H 2702 -9 2 1 4.0 3.0 2.0 33600.0 743 2010000554995 H 2702 -9 3 1 8.0 3.0 2.0 64200.0 744 2009000090585 H 2702 -9 2 1 9.0 3.0 1.0 36000.0 745 2009000991840 H 2702 -9 2 1 2.0 2.0 3.0 113000.0 746 2010001199295 H 2702 -9 1 1 6.0 3.0 1.0 110600.0 747 2010000531956 H 2702 -9 2 1 1.0 1.0 2.0 74000.0 748 2009000209747 H 2702 -9 2 1 2.0 3.0 2.0 142000.0 749 2011000989438 H 2702 -9 1 1 2.0 1.0 1.0 237400.0 750 2011000990235 H 2702 -9 3 1 1.0 2.0 3.0 151000.0 751 2012000497867 H -9 8502 2 1 2.0 2.0 3.0 136200.0 752 2013000393885 H -9 8502 1 1 2.0 3.0 5.0 69000.0 753 2009001089483 H 2702 -9 3 1 2.0 2.0 2.0 129850.0 754 2009000928777 H 2702 -9 2 1 2.0 2.0 3.0 188500.0 755 2009000935893 H 2702 -9 2 1 2.0 2.0 1.0 16500.0 756 2010000789913 H 2702 -9 2 1 9.0 3.0 2.0 60200.0 757 2012000643381 H -9 8502 4 1 5.0 3.0 2.0 251000.0 758 2011001475367 H 2702 -9 6 1 9.0 3.0 2.0 57000.0 759 2012000603952 H -9 8502 8 1 2.0 3.0 3.0 99230.0 760 2010000011387 H 2702 -9 2 1 2.0 1.0 1.0 220300.0 761 2010001283036 H 2702 -9 2 1 2.0 1.0 2.0 51001.0 762 2010001108709 H 2702 -9 2 1 2.0 1.0 2.0 77700.0 763 2013001259539 H -9 8502 1 1 3.0 3.0 2.0 20000.0 764 2011000656960 H 2702 -9 3 1 2.0 3.0 2.0 70000.0 765 2009000208025 H 2702 -9 2 1 8.0 3.0 0.0 54100.0 766 2011000236562 H 2702 -9 4 1 2.0 1.0 4.0 53300.0 767 2010000805810 H 2702 -9 3 1 2.0 2.0 2.0 1000.0 768 2010000255137 H 2702 -9 1 1 9.0 3.0 1.0 1800.0 769 2013000496979 H -9 8502 2 1 3.0 1.0 3.0 375304.0 ... hh_size hh_workers seniors sf_detached \ 0 ... four or more two or more no no 1 ... one one no no 2 ... one one no no 3 ... one one no no 4 ... one one no no 5 ... one one no no 6 ... one none no no 7 ... one one no no 8 ... two none no no 9 ... four or more one yes no 10 ... three one no no 11 ... two none no no 12 ... two none no no 13 ... three one no no 14 ... four or more two or more no yes 15 ... three two or more no yes 16 ... two none no yes 17 ... two one no no 18 ... two one no no 19 ... two one no no 20 ... two one no yes 21 ... two one no yes 22 ... two two or more no no 23 ... two two or more no no 24 ... two two or more no no 25 ... two two or more no no 26 ... two two or more no yes 27 ... two two or more no yes 28 ... two two or more no yes 29 ... two two or more no yes .. ... ... ... ... ... 740 ... three one no no 741 ... two one no no 742 ... two one no no 743 ... three one no no 744 ... two one no no 745 ... two one no yes 746 ... one one no no 747 ... two two or more no no 748 ... two one yes yes 749 ... one one no yes 750 ... three one yes no 751 ... two none yes yes 752 ... one none yes yes 753 ... three two or more no yes 754 ... two one yes yes 755 ... two one no yes 756 ... two two or more yes no 757 ... four or more two or more no no 758 ... four or more one no no 759 ... four or more two or more no yes 760 ... two two or more no yes 761 ... two two or more yes yes 762 ... two none yes yes 763 ... one one no no 764 ... three two or more no yes 765 ... two one yes no 766 ... four or more one no yes 767 ... three none no yes 768 ... one none yes no 769 ... two two or more no no tenure_mover cat_id state county tract block group 0 rent not recent 9282 06 085 508203 3 1 rent not recent 15490 06 085 508203 3 2 rent not recent 17026 06 085 508203 3 3 rent not recent 18178 06 085 508203 3 4 rent not recent 18562 06 085 508203 3 5 own not recent 20096 06 085 508203 3 6 rent not recent 21602 06 085 508203 3 7 rent not recent 21634 06 085 508203 3 8 rent not recent 21794 06 085 508203 3 9 rent not recent 26154 06 085 508203 3 10 rent not recent 27874 06 085 508203 3 11 rent not recent 29474 06 085 508203 3 12 rent not recent 29474 06 085 508203 3 13 rent not recent 30946 06 085 508203 3 14 own not recent 32324 06 085 508203 3 15 own not recent 32516 06 085 508203 3 16 own not recent 32548 06 085 508203 3 17 own not recent 32576 06 085 508203 3 18 rent not recent 32578 06 085 508203 3 19 rent not recent 32578 06 085 508203 3 20 own not recent 32580 06 085 508203 3 21 own not recent 32580 06 085 508203 3 22 rent not recent 32610 06 085 508203 3 23 rent not recent 32610 06 085 508203 3 24 rent not recent 32610 06 085 508203 3 25 rent not recent 32610 06 085 508203 3 26 own not recent 32612 06 085 508203 3 27 own not recent 32612 06 085 508203 3 28 own not recent 32612 06 085 508203 3 29 own not recent 32612 06 085 508203 3 .. ... ... ... ... ... ... 740 rent not recent 132322 06 085 508203 3 741 rent not recent 36802 06 085 508203 3 742 rent not recent 127426 06 085 508203 3 743 rent not recent 43618 06 085 508203 3 744 rent recent 110915 06 085 508203 3 745 own not recent 31044 06 085 508203 3 746 rent not recent 108802 06 085 508203 3 747 own not recent 36832 06 085 508203 3 748 rent not recent 78286 06 085 508203 3 749 own not recent 18180 06 085 508203 3 750 own not recent 79736 06 085 508203 3 751 own not recent 78252 06 085 508203 3 752 rent not recent 82670 06 085 508203 3 753 own not recent 38660 06 085 508203 3 754 own not recent 79820 06 085 508203 3 755 own not recent 21828 06 085 508203 3 756 rent not recent 82154 06 085 508203 3 757 rent recent 132163 06 085 508203 3 758 rent not recent 42674 06 085 508203 3 759 rent not recent 44230 06 085 508203 3 760 own not recent 18404 06 085 508203 3 761 own not recent 81388 06 085 508203 3 762 own not recent 36780 06 085 508203 3 763 rent not recent 38146 06 085 508203 3 764 rent not recent 136598 06 085 508203 3 765 rent not recent 49482 06 085 508203 3 766 own not recent 33828 06 085 508203 3 767 own not recent 37060 06 085 508203 3 768 rent not recent 68858 06 085 508203 3 769 own not recent 124768 06 085 508203 3 [770 rows x 32 columns], serialno puma00 puma10 AGEP RELP SEX ESR HISP RAC1P hispanic \ 0 2012000024049 -9 8502 47 1 2 6.0 1 6 no 1 2012000024049 -9 8502 47 1 2 6.0 1 6 no 2 2012000024049 -9 8502 47 1 2 6.0 1 6 no 3 2012000024049 -9 8502 53 0 1 1.0 1 6 no 4 2012000024049 -9 8502 53 0 1 1.0 1 6 no 5 2012000024049 -9 8502 53 0 1 1.0 1 6 no 6 2012000024049 -9 8502 17 2 1 6.0 1 6 no 7 2012000024049 -9 8502 17 2 1 6.0 1 6 no 8 2012000024049 -9 8502 17 2 1 6.0 1 6 no 9 2012000024049 -9 8502 6 2 2 NaN 1 6 no 10 2012000024049 -9 8502 6 2 2 NaN 1 6 no 11 2012000024049 -9 8502 6 2 2 NaN 1 6 no 12 2012000038026 -9 8502 37 1 2 3.0 1 6 no 13 2012000038026 -9 8502 48 0 1 1.0 1 6 no 14 2012000038026 -9 8502 6 2 1 NaN 1 6 no 15 2012000038026 -9 8502 4 2 2 NaN 1 6 no 16 2012000076386 -9 8502 43 0 2 6.0 1 6 no 17 2012000076386 -9 8502 43 0 2 6.0 1 6 no 18 2012000076386 -9 8502 43 0 2 6.0 1 6 no 19 2012000076386 -9 8502 46 1 1 1.0 1 6 no 20 2012000076386 -9 8502 46 1 1 1.0 1 6 no 21 2012000076386 -9 8502 46 1 1 1.0 1 6 no 22 2012000076386 -9 8502 12 2 1 NaN 1 6 no 23 2012000076386 -9 8502 12 2 1 NaN 1 6 no 24 2012000076386 -9 8502 12 2 1 NaN 1 6 no 25 2012000076386 -9 8502 16 2 2 6.0 1 6 no 26 2012000076386 -9 8502 16 2 2 6.0 1 6 no 27 2012000076386 -9 8502 16 2 2 6.0 1 6 no 28 2012000176039 -9 8502 58 1 2 1.0 1 6 no 29 2012000176039 -9 8502 27 2 1 1.0 1 6 no ... ... ... ... ... ... ... ... ... ... ... 2244 2009001006831 2702 -9 34 0 1 1.0 2 1 yes 2245 2009001006831 2702 -9 4 2 1 NaN 2 1 yes 2246 2009001006831 2702 -9 4 2 1 NaN 2 1 yes 2247 2009001006831 2702 -9 2 2 2 NaN 2 1 yes 2248 2009001006831 2702 -9 2 2 2 NaN 2 1 yes 2249 2011000656960 2702 -9 26 1 2 1.0 2 1 yes 2250 2011000656960 2702 -9 26 1 2 1.0 2 1 yes 2251 2011000656960 2702 -9 27 0 1 1.0 2 1 yes 2252 2011000656960 2702 -9 27 0 1 1.0 2 1 yes 2253 2011000656960 2702 -9 1 2 1 NaN 2 1 yes 2254 2011000656960 2702 -9 1 2 1 NaN 2 1 yes 2255 2013000583586 -9 8502 34 0 1 1.0 2 1 yes 2256 2011000482661 2702 -9 34 2 1 1.0 2 1 yes 2257 2011000482661 2702 -9 67 0 1 6.0 2 1 yes 2258 2011000482661 2702 -9 8 7 2 NaN 2 1 yes 2259 2011000482661 2702 -9 73 1 2 6.0 2 1 yes 2260 2010000789913 2702 -9 60 1 2 1.0 1 2 no 2261 2010000789913 2702 -9 68 0 1 1.0 1 2 no 2262 2012000306986 -9 8502 83 0 1 6.0 1 6 no 2263 2013001102796 -9 8502 74 0 1 6.0 1 6 no 2264 2009000183391 2702 -9 63 0 1 1.0 1 6 no 2265 2012001080872 -9 8502 93 0 1 6.0 2 1 yes 2266 2012001080872 -9 8502 80 1 2 6.0 2 1 yes 2267 2012001247807 -9 8502 88 0 1 6.0 3 1 yes 2268 2012001247807 -9 8502 93 1 2 6.0 3 1 yes 2269 2013000619824 -9 8502 77 1 1 6.0 2 1 yes 2270 2013000619824 -9 8502 77 0 2 6.0 2 1 yes 2271 2010000396495 2702 -9 61 0 1 1.0 20 1 yes 2272 2010000396495 2702 -9 61 1 2 1.0 20 1 yes 2273 2010000255137 2702 -9 84 0 2 6.0 3 1 yes person_age person_sex race cat_id hh_id 0 35 to 60 female asian 138256 98 1 35 to 60 female asian 138256 106 2 35 to 60 female asian 138256 107 3 35 to 60 male asian 138260 98 4 35 to 60 male asian 138260 106 5 35 to 60 male asian 138260 107 6 19 and under male asian 138244 98 7 19 and under male asian 138244 106 8 19 and under male asian 138244 107 9 19 and under female asian 138240 98 10 19 and under female asian 138240 106 11 19 and under female asian 138240 107 12 35 to 60 female asian 138256 54 13 35 to 60 male asian 138260 54 14 19 and under male asian 138244 54 15 19 and under female asian 138240 54 16 35 to 60 female asian 138256 75 17 35 to 60 female asian 138256 80 18 35 to 60 female asian 138256 84 19 35 to 60 male asian 138260 75 20 35 to 60 male asian 138260 80 21 35 to 60 male asian 138260 84 22 19 and under male asian 138244 75 23 19 and under male asian 138244 80 24 19 and under male asian 138244 84 25 19 and under female asian 138240 75 26 19 and under female asian 138240 80 27 19 and under female asian 138240 84 28 35 to 60 female asian 138256 631 29 20 to 35 male asian 138252 631 ... ... ... ... ... ... 2244 20 to 35 male white 138287 607 2245 19 and under male white 138279 356 2246 19 and under male white 138279 607 2247 19 and under female white 138275 356 2248 19 and under female white 138275 607 2249 20 to 35 female white 138283 447 2250 20 to 35 female white 138283 764 2251 20 to 35 male white 138287 447 2252 20 to 35 male white 138287 764 2253 19 and under male white 138279 447 2254 19 and under male white 138279 764 2255 20 to 35 male white 138287 564 2256 20 to 35 male white 138287 718 2257 above 60 male white 138303 718 2258 19 and under female white 138275 718 2259 above 60 female white 138299 718 2260 35 to 60 female black 138257 756 2261 above 60 male black 138269 756 2262 above 60 male asian 138268 571 2263 above 60 male asian 138268 452 2264 above 60 male asian 138268 701 2265 above 60 male white 138303 563 2266 above 60 female white 138299 563 2267 above 60 male white 138303 574 2268 above 60 female white 138299 574 2269 above 60 male white 138303 533 2270 above 60 female white 138299 533 2271 above 60 male white 138303 713 2272 above 60 female white 138299 713 2273 above 60 female white 138299 768 [2274 rows x 15 columns], {BlockGroupID(state='06', county='085', tract='508203', block_group='3'): FitQuality(people_chisq=50.53639934882075, people_p=0.37362753869683724)})