scona is a tool to perform network analysis over correlation networks of brain regions. This tutorial will go through the basic functionality of scona, taking us from our inputs (a matrix of structural regional measures over subjects) to a report of local network measures for each brain region, and network level comparisons to a cohort of random graphs of the same degree.
import numpy as np
import networkx as nx
import scona as scn
import scona.datasets as datasets
A scona analysis starts with four inputs.
# Read in sample data from the NSPN WhitakerVertes PNAS 2016 paper.
df, names, covars, centroids = datasets.NSPN_WhitakerVertes_PNAS2016.import_data()
df.head()
Unnamed: 0 | nspn_id | occ | centre | study_primary | age_scan | sex | male | age_bin | mri_centre | ... | rh_supramarginal_part5 | rh_supramarginal_part6 | rh_supramarginal_part7 | rh_frontalpole_part1 | rh_temporalpole_part1 | rh_transversetemporal_part1 | rh_insula_part1 | rh_insula_part2 | rh_insula_part3 | rh_insula_part4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 10356 | 0 | Cambridge | 2K_Cohort | 20.761 | Female | 0.0 | 4 | WBIC | ... | 2.592 | 2.841 | 2.318 | 2.486 | 3.526 | 2.638 | 3.308 | 2.583 | 3.188 | 3.089 |
1 | 1 | 10702 | 0 | Cambridge | 2K_Cohort | 16.055 | Male | 1.0 | 2 | WBIC | ... | 3.448 | 3.283 | 2.740 | 3.225 | 4.044 | 3.040 | 3.867 | 2.943 | 3.478 | 3.609 |
2 | 2 | 10736 | 0 | Cambridge | 2K_Cohort | 14.897 | Female | 0.0 | 1 | WBIC | ... | 3.526 | 3.269 | 3.076 | 3.133 | 3.900 | 2.914 | 3.894 | 2.898 | 3.720 | 3.580 |
3 | 3 | 10778 | 0 | Cambridge | 2K_Cohort | 20.022 | Female | 0.0 | 4 | WBIC | ... | 2.830 | 2.917 | 2.647 | 2.796 | 3.401 | 3.045 | 3.138 | 2.739 | 2.833 | 3.349 |
4 | 4 | 10794 | 0 | Cambridge | 2K_Cohort | 14.656 | Female | 0.0 | 1 | WBIC | ... | 2.689 | 3.294 | 2.820 | 2.539 | 2.151 | 2.734 | 2.791 | 2.935 | 3.538 | 3.403 |
5 rows × 324 columns
We calculate residuals of the matrix df for the columns of names, correcting for the columns in covars.
df_res = scn.create_residuals_df(df, names, covars)
df_res
lh_bankssts_part1 | lh_bankssts_part2 | lh_caudalanteriorcingulate_part1 | lh_caudalmiddlefrontal_part1 | lh_caudalmiddlefrontal_part2 | lh_caudalmiddlefrontal_part3 | lh_caudalmiddlefrontal_part4 | lh_cuneus_part1 | lh_cuneus_part2 | lh_entorhinal_part1 | ... | rh_supramarginal_part5 | rh_supramarginal_part6 | rh_supramarginal_part7 | rh_frontalpole_part1 | rh_temporalpole_part1 | rh_transversetemporal_part1 | rh_insula_part1 | rh_insula_part2 | rh_insula_part3 | rh_insula_part4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -0.016677 | -0.036253 | 0.035892 | -0.004586 | 0.040114 | -0.005168 | -0.252694 | -0.170037 | -0.192492 | -0.119414 | ... | -0.421125 | -0.123926 | -0.37903 | -0.436609 | -0.143411 | -0.103404 | -0.321707 | -0.159219 | -0.19032 | -0.393141 |
1 | 0.280323 | 0.354747 | 0.482892 | 0.697414 | 0.406114 | 0.445832 | 0.390306 | 0.326963 | 0.389508 | 0.340586 | ... | 0.434875 | 0.318074 | 0.04297 | 0.302391 | 0.374589 | 0.298596 | 0.237293 | 0.200781 | 0.09968 | 0.126859 |
2 | 0.168323 | 0.081747 | 0.365892 | 0.412414 | 0.283114 | 0.187832 | 0.576306 | -0.061037 | -0.062492 | 0.374586 | ... | 0.512875 | 0.304074 | 0.37897 | 0.210391 | 0.230589 | 0.172596 | 0.264293 | 0.155781 | 0.34168 | 0.097859 |
3 | -0.086677 | -0.249253 | -0.404108 | -0.362586 | -0.046886 | -0.154168 | -0.156694 | 0.029963 | -0.246492 | -0.009414 | ... | -0.183125 | -0.047926 | -0.05003 | -0.126609 | -0.268411 | 0.303596 | -0.491707 | -0.003219 | -0.54532 | -0.133141 |
4 | 0.400323 | 0.136747 | 0.125892 | -0.218586 | -1.003886 | -0.142168 | -0.752694 | -0.091037 | -0.550492 | -1.223414 | ... | -0.324125 | 0.329074 | 0.12297 | -0.383609 | -1.518411 | -0.007404 | -0.838707 | 0.192781 | 0.15968 | -0.079141 |
5 | 0.010323 | -0.090253 | -0.248108 | -0.131586 | -0.080886 | -0.110168 | -0.142694 | 0.146963 | -0.047492 | 0.155586 | ... | -0.097125 | -0.074926 | -0.12803 | -0.114609 | -0.241411 | 0.209596 | 0.326293 | 0.082781 | 0.26868 | 0.099859 |
6 | -0.118677 | 0.133747 | 0.089892 | 0.047414 | 0.268114 | 0.017832 | -0.037694 | 0.061963 | 0.028508 | -0.214414 | ... | 0.080875 | 0.027074 | 0.00797 | -0.067609 | 0.310589 | -0.107404 | -0.033707 | -0.015219 | -0.09132 | 0.048859 |
7 | 0.106323 | 0.043747 | 0.355892 | 0.174414 | 0.249114 | 0.068832 | -0.017694 | 0.120963 | 0.095508 | 0.333586 | ... | 0.427875 | 0.134074 | 0.25697 | -0.229609 | -0.214411 | 0.329596 | -0.355707 | 0.015781 | -0.02732 | -0.118141 |
8 | 0.433323 | 0.037747 | 0.191892 | 0.103414 | 0.206114 | -0.091168 | 0.210306 | -0.105037 | 0.009508 | 0.388586 | ... | 0.103875 | 0.182074 | 0.31697 | -0.083609 | 0.176589 | 0.062596 | 0.404293 | 0.024781 | -0.05932 | 0.041859 |
9 | 0.191323 | 0.081747 | 0.093892 | 0.100414 | 0.012114 | 0.180832 | 0.123306 | -0.062037 | -0.180492 | -0.323414 | ... | -0.197125 | -0.022926 | -0.17103 | 0.527391 | 0.004589 | 0.123596 | 0.413293 | -0.185219 | -0.21632 | 0.065859 |
10 | -1.036677 | -0.759253 | -0.621108 | 0.058414 | -0.298886 | 0.005832 | -0.419694 | 0.348963 | 0.232508 | -0.997414 | ... | -0.463125 | 0.153074 | 0.01097 | -0.540609 | -0.149411 | 0.290596 | -0.078707 | 0.073781 | 0.30068 | 0.333859 |
11 | 0.183323 | 0.155747 | -0.100108 | 0.186414 | -0.036886 | 0.206832 | 0.154306 | 0.020963 | -0.053492 | 0.004586 | ... | 0.149875 | -0.113926 | -0.11203 | 0.015391 | 0.233589 | 0.134596 | -0.206707 | -0.039219 | -0.35132 | 0.220859 |
12 | -0.058677 | -0.222253 | -0.230108 | 0.373414 | 0.219114 | 0.234832 | 0.018306 | 0.026963 | 0.090508 | 0.301586 | ... | 0.102875 | 0.059074 | -0.05203 | 0.061391 | -0.193411 | 0.127596 | 0.292293 | -0.027219 | 0.22968 | 0.481859 |
13 | 0.200323 | -0.048253 | 0.032892 | -0.106586 | 0.048114 | -0.502168 | -0.108694 | 0.127963 | -0.104492 | -0.043414 | ... | 0.634875 | 0.150074 | 0.30797 | 0.413391 | -0.463411 | 0.388596 | 0.216293 | 0.074781 | 0.23568 | 0.192859 |
14 | 0.221323 | 0.374747 | 0.107892 | -0.115586 | 0.152114 | -0.089168 | 0.032306 | 0.180963 | 0.287508 | -0.422414 | ... | -0.086125 | -0.217926 | -0.06003 | 0.198391 | 0.171589 | 0.026596 | 0.124293 | 0.050781 | -0.02332 | -0.113141 |
15 | 0.075323 | -0.141253 | -0.161108 | 0.162414 | -0.100886 | -0.026168 | -0.145694 | 0.209963 | -0.070492 | -0.518414 | ... | 0.266875 | 0.019074 | -0.21203 | 0.296391 | -0.047411 | -0.364404 | -0.380707 | 0.210781 | 0.23068 | 0.030859 |
16 | -0.047677 | 0.226747 | -0.067108 | 0.019414 | 0.165114 | -0.168168 | -0.124694 | -0.312037 | -0.035492 | 0.112586 | ... | 0.056875 | -0.091926 | -0.03103 | 0.301391 | 0.392589 | 0.115596 | 0.027293 | 0.234781 | 0.11168 | 0.111859 |
17 | 0.055323 | -0.055253 | 0.164892 | -0.322586 | -0.029886 | -0.139168 | -0.103694 | -0.004037 | 0.076508 | 0.069586 | ... | -0.157125 | -0.117926 | 0.03697 | -0.286609 | 0.243589 | 0.162596 | 0.045293 | 0.148781 | 0.22168 | 0.050859 |
18 | -0.327677 | 0.128747 | -0.260108 | 0.251414 | -0.100886 | 0.145832 | -0.091694 | 0.002963 | 0.038508 | 0.231586 | ... | 0.261875 | 0.341074 | 0.20797 | 0.031391 | 0.052589 | -0.204404 | 0.224293 | -0.111219 | -0.08532 | 0.079859 |
19 | -0.012677 | -0.090253 | 0.499892 | -0.071586 | 0.111114 | 0.023832 | 0.103306 | -0.278037 | 0.053508 | 0.236586 | ... | -0.003125 | 0.033074 | -0.08003 | -0.083609 | 0.069589 | 0.085596 | 0.416293 | -0.049219 | 0.27268 | 0.344859 |
20 | 0.052323 | -0.096253 | 0.879892 | -0.218586 | -0.087886 | -0.296168 | -0.231694 | -0.080037 | -0.212492 | -0.596414 | ... | 0.255875 | -0.167926 | -0.18103 | 0.095391 | -0.579411 | -0.360404 | 0.013293 | -0.129219 | -0.25632 | 0.101859 |
21 | -0.028677 | -0.236253 | -0.091108 | -0.280586 | -0.182886 | -0.320168 | 0.036306 | 0.103963 | 0.198508 | -0.637414 | ... | -0.242125 | -0.060926 | -0.35703 | -0.273609 | -0.645411 | -0.026404 | -0.240707 | 0.046781 | 0.16268 | 0.029859 |
22 | 0.235323 | 0.102747 | 0.235892 | 0.103414 | 0.131114 | -0.083168 | 0.164306 | 0.311963 | 0.240508 | -0.716414 | ... | 0.374875 | 0.073074 | -0.16303 | 0.303391 | 0.011589 | 0.207596 | 0.238293 | 0.056781 | -0.27732 | 0.288859 |
23 | 0.120323 | 0.066747 | -0.144108 | 0.195414 | 0.097114 | 0.122832 | 0.139306 | 0.166963 | 0.033508 | 0.176586 | ... | 0.321875 | 0.009074 | -0.23003 | 0.320391 | 0.749589 | 0.300596 | 0.069293 | 0.103781 | 0.02568 | -0.048141 |
24 | 0.084323 | 0.094747 | -0.203108 | -0.025586 | -0.042886 | 0.127832 | 0.332306 | 0.005963 | 0.178508 | -0.394414 | ... | 0.356875 | 0.079074 | 0.10597 | 0.071391 | -1.264411 | 0.001596 | -0.204707 | -0.084219 | -0.05932 | -0.320141 |
25 | 0.098323 | 0.030747 | 0.304892 | 0.160414 | 0.197114 | 0.275832 | 0.115306 | 0.185963 | 0.222508 | 0.053586 | ... | -0.141125 | 0.200074 | -0.05003 | 0.162391 | 0.155589 | -0.153404 | 0.403293 | 0.026781 | 0.33068 | 0.282859 |
26 | 0.024323 | -0.112253 | 0.335892 | 0.332414 | 0.285114 | 0.348832 | 0.333306 | 0.214963 | 0.120508 | 0.118586 | ... | 0.263875 | 0.127074 | 0.17397 | 0.191391 | 0.249589 | 0.214596 | 0.029293 | 0.233781 | 0.14168 | 0.342859 |
27 | 0.215323 | -0.008253 | -0.041108 | 0.083414 | 0.159114 | -0.089168 | 0.300306 | 0.156963 | 0.088508 | 0.425586 | ... | -0.098125 | 0.280074 | 0.28197 | 0.000391 | 0.808589 | 0.006596 | -0.036707 | 0.331781 | 0.16468 | -0.137141 |
28 | -0.170677 | -0.324253 | -0.035108 | -0.098586 | -0.178886 | 0.071832 | -0.251694 | -0.172037 | -0.109492 | 0.553586 | ... | -0.119125 | 0.094074 | 0.13297 | -0.610609 | -0.063411 | 0.001596 | 0.141293 | 0.106781 | 0.47968 | 0.154859 |
29 | -0.102677 | -0.035253 | -0.117108 | 0.318414 | 0.114114 | 0.035832 | 0.131306 | -0.108037 | 0.029508 | 0.241586 | ... | 0.008875 | -0.023926 | -0.34803 | -0.158609 | 0.240589 | -0.392404 | 0.222293 | -0.063219 | -0.24132 | -0.042141 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
267 | -0.604677 | -0.283253 | -0.478108 | -0.215586 | -0.244886 | -0.302168 | -0.239694 | -0.234037 | -0.143492 | -0.014414 | ... | -0.118125 | -0.104926 | -0.22403 | -0.305609 | -0.048411 | -0.260404 | -0.130707 | -0.320219 | -0.17832 | -0.153141 |
268 | -0.090677 | -0.174253 | -0.005108 | -0.201586 | -0.215886 | -0.309168 | -0.170694 | -0.136037 | -0.316492 | -0.344414 | ... | 0.110875 | -0.069926 | -0.21103 | -0.029609 | -0.027411 | -0.401404 | -0.151707 | 0.014781 | 0.04168 | -0.192141 |
269 | -0.357677 | -0.119253 | 0.010892 | -0.054586 | 0.006114 | 0.097832 | -0.164694 | -0.214037 | -0.363492 | 0.059586 | ... | -0.299125 | -0.240926 | -0.48403 | -0.392609 | -0.081411 | -0.217404 | -0.334707 | -0.190219 | 0.18768 | 0.153859 |
270 | 0.166323 | 0.225747 | 0.357892 | 0.109414 | -0.017886 | 0.109832 | 0.233306 | -0.187037 | -0.090492 | -0.414414 | ... | 0.089875 | -0.149926 | 0.09397 | 0.096391 | -0.332411 | -0.022404 | 0.040293 | 0.066781 | 0.14768 | 0.005859 |
271 | -0.056677 | 0.032747 | 0.074892 | -0.072586 | 0.140114 | 0.023832 | 0.040306 | -0.314037 | -0.106492 | -0.014414 | ... | -0.155125 | -0.173926 | -0.16003 | 0.053391 | 0.091589 | 0.107596 | 0.312293 | 0.226781 | -0.02432 | -0.068141 |
272 | -0.159677 | -0.130253 | -0.410108 | -0.154586 | -0.204886 | -0.074168 | -0.299694 | -0.113037 | -0.417492 | 0.117586 | ... | -0.390125 | -0.220926 | -0.15603 | -0.479609 | -0.070411 | -0.258404 | -0.035707 | -0.082219 | -0.24732 | -0.106141 |
273 | -0.044677 | -0.066253 | -0.054108 | 0.289414 | 0.055114 | 0.143832 | 0.033306 | -0.118037 | -0.057492 | -0.447414 | ... | -0.160125 | -0.059926 | -0.21903 | -0.042609 | -0.973411 | -0.063404 | -0.117707 | 0.005781 | 0.16668 | -0.132141 |
274 | 0.591323 | 0.204747 | 0.964892 | 0.083414 | 0.247114 | 0.060832 | 0.243306 | 0.269963 | 0.017508 | -0.211414 | ... | 0.078875 | -0.030926 | -0.10203 | -0.002609 | 0.377589 | 0.035596 | -0.297707 | 0.018781 | -0.00032 | 0.275859 |
275 | 0.290323 | 0.104747 | 0.129892 | -0.112586 | 0.008114 | 0.015832 | 0.017306 | 0.164963 | 0.092508 | 0.136586 | ... | 0.151875 | -0.044926 | 0.03697 | -0.131609 | 0.205589 | 0.024596 | 0.012293 | -0.011219 | -0.04732 | 0.044859 |
276 | -0.197677 | -0.123253 | -0.140108 | -0.063586 | -0.268886 | -0.137168 | -0.176694 | -0.029037 | -0.158492 | -1.103414 | ... | -0.183125 | -0.317926 | -0.23103 | -0.011609 | -0.146411 | -0.106404 | -0.307707 | -0.149219 | -0.46132 | -0.449141 |
277 | -0.115677 | -0.187253 | -0.163108 | 0.037414 | -0.177886 | 0.092832 | -0.158694 | 0.042963 | -0.052492 | 0.311586 | ... | -0.040125 | -0.144926 | 0.04497 | -0.074609 | 0.241589 | -0.098404 | 0.155293 | -0.269219 | -0.11532 | 0.224859 |
278 | -0.020677 | 0.037747 | 0.184892 | -0.231586 | 0.115114 | -0.216168 | 0.078306 | -0.119037 | 0.026508 | 0.500586 | ... | 0.208875 | -0.269926 | -0.07503 | 0.109391 | 0.752589 | -0.303404 | -0.075707 | -0.149219 | -0.27532 | -0.155141 |
279 | -0.197677 | -0.128253 | -0.123108 | 0.221414 | 0.141114 | -0.052168 | 0.001306 | -0.256037 | -0.088492 | -0.018414 | ... | -0.179125 | 0.056074 | -0.25603 | -0.312609 | 0.540589 | -0.281404 | 0.288293 | -0.092219 | -0.17332 | 0.202859 |
280 | 0.040323 | 0.115747 | -0.322108 | -0.163586 | 0.034114 | -0.075168 | -0.051694 | -0.072037 | 0.161508 | -0.070414 | ... | 0.193875 | -0.043926 | -0.00603 | -0.025609 | 0.129589 | 0.148596 | -0.181707 | -0.166219 | 0.11968 | 0.239859 |
281 | -0.081677 | -0.254253 | -0.144108 | -0.035586 | -0.221886 | 0.103832 | -0.140694 | -0.201037 | -0.285492 | -0.566414 | ... | 0.021875 | -0.259926 | -0.06303 | -0.563609 | -0.486411 | -0.403404 | 0.208293 | -0.200219 | -0.38132 | -0.004141 |
282 | 0.304323 | 0.275747 | 0.050892 | 0.406414 | -0.260886 | 0.197832 | -0.060694 | 0.071963 | 0.272508 | 0.086586 | ... | -0.065125 | -0.018926 | -0.05403 | -0.079609 | -0.345411 | 0.003596 | 0.190293 | 0.157781 | -0.07332 | -0.016141 |
283 | -0.305677 | -0.238253 | -0.178108 | -0.360586 | -0.077886 | -0.201168 | -0.061694 | -0.185037 | -0.128492 | -0.393414 | ... | 0.182875 | 0.455074 | 0.07497 | -0.132609 | -0.289411 | -0.127404 | 0.108293 | -0.408219 | -0.02232 | -0.117141 |
284 | -0.027677 | -0.158253 | 0.325892 | -0.156586 | -0.180886 | -0.258168 | -0.495694 | -0.088037 | -0.003492 | -0.279414 | ... | -0.426125 | -0.618926 | -0.58403 | -0.095609 | 0.234589 | 0.208596 | -0.040707 | -0.310219 | 0.08468 | -0.363141 |
285 | -0.216677 | -0.194253 | -0.189108 | -0.320586 | -0.349886 | -0.364168 | -0.040694 | -0.165037 | -0.418492 | -0.879414 | ... | 0.286875 | 0.135074 | -0.15703 | -0.095609 | -0.683411 | 0.179596 | -0.602707 | -0.162219 | -0.05432 | -0.057141 |
286 | -0.073677 | -0.038253 | 0.199892 | 0.169414 | 0.149114 | -0.143168 | -0.025694 | -0.127037 | 0.317508 | -0.432414 | ... | 0.125875 | -0.206926 | -0.10503 | -0.109609 | -0.489411 | 0.110596 | 0.186293 | -0.040219 | -0.09332 | 0.113859 |
287 | 0.136323 | -0.043253 | -0.317108 | -0.010586 | -0.026886 | -0.001168 | 0.083306 | -0.012037 | -0.007492 | -0.286414 | ... | 0.049875 | 0.157074 | -0.14303 | 0.171391 | 0.224589 | -0.221404 | 0.475293 | -0.159219 | -0.05332 | -0.012141 |
288 | -0.147677 | -0.059253 | 0.028892 | -0.108586 | -0.090886 | 0.235832 | -0.101694 | 0.177963 | 0.338508 | 0.024586 | ... | -0.163125 | 0.239074 | -0.00603 | 0.187391 | 0.066589 | 0.212596 | -0.525707 | 0.003781 | 0.26568 | -0.061141 |
289 | -0.209677 | 0.044747 | 0.043892 | -0.130586 | -0.178886 | -0.134168 | -0.152694 | -0.034037 | -0.011492 | 0.174586 | ... | 0.039875 | -0.199926 | -0.02903 | -0.080609 | 0.426589 | -0.293404 | -0.201707 | -0.118219 | -0.17732 | -0.079141 |
290 | -0.403677 | 0.044747 | -0.360108 | -0.476586 | -0.218886 | -0.099168 | 0.142306 | -0.432037 | -0.274492 | 0.156586 | ... | -0.027125 | -0.110926 | -0.17803 | 0.067391 | 0.109589 | -0.089404 | -0.283707 | -0.212219 | -0.07232 | 0.050859 |
291 | -0.053677 | -0.079253 | 0.122892 | 0.079414 | -0.123886 | 0.224832 | 0.018306 | 0.144963 | 0.000508 | 0.409586 | ... | -0.114125 | 0.290074 | -0.06003 | -0.331609 | 0.194589 | 0.309596 | -0.296707 | 0.559781 | 0.36268 | -0.069141 |
292 | -0.065677 | -0.112253 | -0.013108 | -0.233586 | 0.178114 | -0.049168 | -0.103694 | 0.024963 | 0.088508 | -0.169414 | ... | -0.417125 | -0.198926 | 0.01897 | 0.430391 | 0.005589 | 0.126596 | 0.327293 | 0.250781 | 0.18468 | 0.247859 |
293 | 0.014323 | 0.237747 | -0.093108 | 0.100414 | 0.068114 | -0.174168 | -0.113694 | 0.013963 | 0.121508 | -0.030414 | ... | 0.227875 | -0.383926 | -0.02703 | 0.099391 | -0.410411 | -0.010404 | -0.075707 | 0.181781 | 0.29768 | 0.126859 |
294 | 0.066323 | 0.071747 | -0.301108 | -0.021586 | 0.082114 | -0.131168 | -0.339694 | -0.174037 | -0.332492 | 0.478586 | ... | 0.329875 | 0.022074 | 0.23197 | -0.335609 | 0.068589 | -0.007404 | 0.165293 | 0.018781 | -0.20932 | 0.309859 |
295 | 0.053323 | -0.269253 | 0.174892 | -0.041586 | -0.318886 | -0.093168 | -0.199694 | 0.185963 | -0.272492 | 0.304586 | ... | -0.215125 | -0.466926 | 0.03697 | 0.109391 | -0.486411 | -0.272404 | -0.329707 | -0.204219 | 0.12468 | -0.165141 |
296 | -0.206677 | 0.044747 | 0.205892 | -0.159586 | 0.087114 | -0.107168 | -0.191694 | 0.220963 | -0.106492 | -0.066414 | ... | -0.022125 | 0.280074 | 0.14397 | 0.225391 | 0.312589 | 0.366596 | 0.028293 | 0.178781 | 0.47468 | -0.205141 |
297 rows × 308 columns
Now we create a correlation matrix over the columns of df_res
M = scn.create_corrmat(df_res, method='pearson')
A short sidenote on the BrainNetwork class: This is a very lightweight subclass of the Networkx.Graph
class. This means that any methods you can use on a Networkx.Graph
object can also be used on a BrainNetwork
object, although the reverse is not true. We have added various methods which allow us to keep track of measures that have already been calculated, which, especially later on when one is dealing with 10^3 random graphs, saves a lot of time.
All scona measures are implemented in such a way that they can be used on a regular Networkx.Graph
object. For example, instead of G.threshold(10)
you can use scn.threshold_graph(G, 10)
.
Also you can create a BrainNetwork
from a Networkx.Graph
G
, using scn.BrainNetwork(network=G)
Initialise a weighted graph G
from the correlation matrix M
. The parcellation
and centroids
arguments are used to label nodes with names and coordinates respectively.
G = scn.BrainNetwork(network=M, parcellation=names, centroids=centroids)
We threshold G at cost 10 to create a binary graph with 10% as many edges as the complete graph G. Ordinarily when thresholding one takes the 10% of edges with the highest weight. In our case, because we want the resulting graph to be connected, we calculate a minimum spanning tree first. If you want to omit this step, you can pass the argument mst=False
to threshold
.
The threshold method does not edit objects inplace
H = G.threshold(10)
calculate_nodal_measures
will compute and record the following nodal measures
export_nodal_measure
returns nodal attributes in a DataFrame. Let's try it now.
H.report_nodal_measures().head()
centroids | name | x | y | z | |
---|---|---|---|---|---|
0 | [-27.965157, -19.013702, 17.919528] | lh_bankssts_part1 | -27.9652 | -19.0137 | 17.9195 |
1 | [-14.455663, -13.693461, 13.713674] | lh_bankssts_part2 | -14.4557 | -13.6935 | 13.7137 |
2 | [-33.906934, -22.284672, -15.821168] | lh_caudalanteriorcingulate_part1 | -33.9069 | -22.2847 | -15.8212 |
3 | [-17.305373, -53.431573, -36.017154] | lh_caudalmiddlefrontal_part1 | -17.3054 | -53.4316 | -36.0172 |
4 | [-22.265823, -64.366296, -37.674831] | lh_caudalmiddlefrontal_part2 | -22.2658 | -64.3663 | -37.6748 |
Use calculate_nodal_measures
to fill in a bunch of nodal measures
H.calculate_nodal_measures()
Calculating participation coefficient - may take a little while
H.report_nodal_measures().head()
betweenness | centroids | closeness | clustering | degree | module | name | participation_coefficient | shortest_path_length | x | y | z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.00824713 | [-27.965157, -19.013702, 17.919528] | 0.495961 | 0.3358 | 47 | 0 | lh_bankssts_part1 | 0.717067 | 0.00824713 | -27.9652 | -19.0137 | 17.9195 |
1 | 0.0124798 | [-14.455663, -13.693461, 13.713674] | 0.507438 | 0.278788 | 55 | 0 | lh_bankssts_part2 | 0.809587 | 0.0124798 | -14.4557 | -13.6935 | 13.7137 |
2 | 0 | [-33.906934, -22.284672, -15.821168] | 0.336254 | 1 | 2 | 1 | lh_caudalanteriorcingulate_part1 | 0.75 | 0 | -33.9069 | -22.2847 | -15.8212 |
3 | 0.0120765 | [-17.305373, -53.431573, -36.017154] | 0.525685 | 0.383485 | 83 | 2 | lh_caudalmiddlefrontal_part1 | 0.459864 | 0.0120765 | -17.3054 | -53.4316 | -36.0172 |
4 | 0.0292617 | [-22.265823, -64.366296, -37.674831] | 0.549195 | 0.293617 | 95 | 2 | lh_caudalmiddlefrontal_part2 | 0.688753 | 0.0292617 | -22.2658 | -64.3663 | -37.6748 |
We can also add measures as one might normally add nodal attributes to a networkx graph
nx.set_node_attributes(H, name="hat", values={x: x**2 for x in H.nodes})
These show up in our DataFrame too
H.report_nodal_measures(columns=['name', 'degree', 'hat']).head()
degree | hat | name | |
---|---|---|---|
0 | 47 | 0 | lh_bankssts_part1 |
1 | 55 | 1 | lh_bankssts_part2 |
2 | 2 | 4 | lh_caudalanteriorcingulate_part1 |
3 | 83 | 9 | lh_caudalmiddlefrontal_part1 |
4 | 95 | 16 | lh_caudalmiddlefrontal_part2 |
H.calculate_global_measures()
{'assortativity': 0.09076922258276784, 'average_clustering': 0.4498887255891581, 'average_shortest_path_length': 2.376242649858285, 'efficiency': 0.47983958611582617, 'modularity': 0.3828553111606414}
H.rich_club();
The GraphBundle
object is the scona way to handle across network comparisons. What is it? Essentially it's a python dictionary with BrainNetwork
objects as values.
brain_bundle = scn.GraphBundle([H], ['NSPN_cost=10'])
This creates a dictionary-like object with BrainNetwork H
keyed by 'NSPN_cost=10'
brain_bundle
{'NSPN_cost=10': <scona.classes.BrainNetwork at 0x7f3f247f6fd0>}
Now add a series of random_graphs created by edge swap randomisation of H (keyed by 'NSPN_cost=10'
)
# Note that 10 is not usually a sufficient number of random graphs to do meaningful analysis,
# it is used here for time considerations
brain_bundle.create_random_graphs('NSPN_cost=10', 10)
Creating 10 random graphs - may take a little while
brain_bundle
{'NSPN_cost=10': <scona.classes.BrainNetwork at 0x7f3f247f6fd0>, 'NSPN_cost=10_R1': <scona.classes.BrainNetwork at 0x7f3f138b7f28>, 'NSPN_cost=10_R10': <scona.classes.BrainNetwork at 0x7f3f134b8828>, 'NSPN_cost=10_R2': <scona.classes.BrainNetwork at 0x7f3f138b7e80>, 'NSPN_cost=10_R3': <scona.classes.BrainNetwork at 0x7f3f138b7780>, 'NSPN_cost=10_R4': <scona.classes.BrainNetwork at 0x7f3f138b7da0>, 'NSPN_cost=10_R5': <scona.classes.BrainNetwork at 0x7f3f1388ae10>, 'NSPN_cost=10_R6': <scona.classes.BrainNetwork at 0x7f3f134b8a58>, 'NSPN_cost=10_R7': <scona.classes.BrainNetwork at 0x7f3f134b84a8>, 'NSPN_cost=10_R8': <scona.classes.BrainNetwork at 0x7f3f134b8390>, 'NSPN_cost=10_R9': <scona.classes.BrainNetwork at 0x7f3f134b83c8>}
The following method will calculate global measures ( if they have not already been calculated) for all of the graphs in graph_bundle
and report the results in a DataFrame. We can do the same for rich club coefficients below.
brain_bundle.report_global_measures()
assortativity | average_clustering | average_shortest_path_length | efficiency | modularity | |
---|---|---|---|---|---|
NSPN_cost=10 | 0.090769 | 0.449889 | 2.376243 | 0.479840 | 0.382855 |
NSPN_cost=10_R1 | -0.083993 | 0.222571 | 2.086721 | 0.519147 | 0.000000 |
NSPN_cost=10_R10 | -0.087652 | 0.222462 | 2.087821 | 0.518918 | 0.000000 |
NSPN_cost=10_R2 | -0.080897 | 0.230384 | 2.090423 | 0.518615 | 0.000000 |
NSPN_cost=10_R3 | -0.102626 | 0.221894 | 2.082745 | 0.519803 | 0.000000 |
NSPN_cost=10_R4 | -0.072122 | 0.221924 | 2.087842 | 0.518902 | 0.000000 |
NSPN_cost=10_R5 | -0.086952 | 0.232706 | 2.084754 | 0.519357 | 0.000000 |
NSPN_cost=10_R6 | -0.084438 | 0.223727 | 2.085325 | 0.519440 | 0.000000 |
NSPN_cost=10_R7 | -0.080285 | 0.224930 | 2.087525 | 0.519003 | 0.000000 |
NSPN_cost=10_R8 | -0.070332 | 0.225730 | 2.085135 | 0.519281 | 0.000000 |
NSPN_cost=10_R9 | -0.086510 | 0.227159 | 2.090782 | 0.518527 | 0.000000 |
brain_bundle.report_rich_club()
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NSPN_cost=10 | 0.100004 | 0.103228 | 0.107244 | 0.112039 | 0.117842 | 0.122398 | 0.127975 | 0.131899 | 0.136820 | 0.141069 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R1 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121950 | 0.127226 | 0.131092 | 0.135825 | 0.139877 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R10 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121950 | 0.127226 | 0.131150 | 0.135885 | 0.139908 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
NSPN_cost=10_R2 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121950 | 0.127226 | 0.131092 | 0.135855 | 0.139971 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R3 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117589 | 0.122003 | 0.127282 | 0.131150 | 0.135885 | 0.139940 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R4 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121976 | 0.127282 | 0.131150 | 0.135885 | 0.139940 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R5 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121950 | 0.127254 | 0.131150 | 0.135915 | 0.139940 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R6 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121950 | 0.127226 | 0.131092 | 0.135885 | 0.139908 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R7 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121976 | 0.127254 | 0.131150 | 0.135915 | 0.139971 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R8 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121950 | 0.127226 | 0.131121 | 0.135915 | 0.139940 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
NSPN_cost=10_R9 | 0.100004 | 0.103228 | 0.107175 | 0.111920 | 0.117564 | 0.121976 | 0.127254 | 0.131150 | 0.135915 | 0.140034 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
11 rows × 106 columns