WillKoehrsen's
repositories
|
.ipynb_checkpoints
|
data
|
generated
|
style_transfer
|
venv3
|
03.1 Using pre trained word embeddings.ipynb
|
03.2 Domain specific ranking using word2vec cosine distance.ipynb
|
04.1 Collect movie data from Wikipedia.ipynb
|
04.2 Build a recommender system based on outgoing Wikipedia links.ipynb
|
05.1 Generating Text in the Style of an Example Text.ipynb
|
06.1 Question matching.ipynb
|
07.1 Text Classification.ipynb
|
07.2 Emoji Suggestions.ipynb
|
07.3 Tweet Embeddings.ipynb
|
08.1 Sequence to sequence mapping.ipynb
|
08.2 Import Gutenberg.ipynb
|
08.3 Subword tokenizing.ipynb
|
09.1 Reusing a pretrained image recognition network.ipynb
|
09.2 Images as embeddings.ipynb
|
09.3 Retraining.ipynb
|
10.1 Building an inverse image search service.ipynb
|
11.1 Detecting Multiple Images.ipynb
|
12.1 Activation Optimization.ipynb
|
12.2 Neural Style.ipynb
|
13.1 Quick Draw Cat Autoencoder.ipynb
|
13.2 Variational Autoencoder.ipynb
|
13.5 Quick Draw Autoencoder.ipynb
|
14.1 Importing icons.ipynb
|
14.2 Icon Autoencoding.ipynb
|
14.2 Variational Autoencoder Icons.ipynb
|
14.3 Icon GAN.ipynb
|
14.4 Icon RNN.ipynb
|
15.1 Song Classification.ipynb
|
15.2 Index Local MP3s.ipynb
|
15.3 Spotify Playlists.ipynb
|
15.4 Train a music recommender.ipynb
|
16.1 Productionize Embeddings.ipynb
|
16.2 Prepare Keras model for Tensorflow Serving.ipynb
|
16.3 Prepare model for iOS.ipynb
|
16.4 Simple Text Generation.ipynb
|
Book Recommendation-Copy1.ipynb
|
Book Recommendation.ipynb
|
Building Book Recommendation Model.ipynb
|
Exploring Book Data.ipynb
|
File Split.ipynb
|
Multithreading.ipynb
|
Simple Seq2Seq.ipynb
|
Untitled.ipynb
|
.gitignore
|
LICENSE
|
deeplearningcookbook.pdf
|
export_keras_to_tensor_flow_serving.py
|
keras_server.py
|
nb_utils.py
|
requirements.in
|
requirements.txt
|
seq2seq_server.py
|
simple_server.py
|