from gensim.models import Word2Vec
w2v_model = Word2Vec.load('./data/model.bin')
w2v_model.wv.most_similar(positive=['woman','king'], negative=['man'])
[('chryses', 0.6371129751205444), ('priest', 0.6282371282577515), ('nymph', 0.6165897250175476), ('thanks', 0.6120550632476807), ('dishonored', 0.6062030792236328), ('narrate', 0.605045735836029), ('angered', 0.6038438677787781), ('chieftains', 0.6015218496322632), ('appease', 0.6003137826919556), ('akhilleus', 0.6002722978591919)]
w2v_model.wv.similarity('woman','man')
0.3998656
# sorted(w2v_model.wv.vocab.keys(), reverse=False)[:14]
len(w2v_model.wv.vocab.keys())
11098
w2v_model.wv.most_similar('stark')
[('principals', 0.9933313131332397), ('threatening', 0.9859204292297363), ('distorting', 0.9620187878608704), ('freeport', 0.9174789190292358), ('stood', 0.8492887616157532), ('extend', 0.8167773485183716), ('douglas', 0.767949104309082), ('1858', 0.7635020017623901), ('conspiracy', 0.762062668800354), ('values', 0.7606658339500427)]