all these tools made for prepare data for paddlepaddlea.
from osgeo import gdal, ogr
fn_ras = 'DataSet/raster/01/01.tif'
fn_vec = 'DataSet/vector/01/01.shp'
output = 'DataSet/results/lab_all_values.tif'
import the GDAL driver "ESRI Shapefile" to open the shapefile
driver = ogr.GetDriverByName("ESRI Shapefile")
open raster and shapefile datasets with (shapefile , 1)
ras_ds = gdal.Open(fn_ras)
vec_ds = driver.Open(fn_vec, 1)
Get the :
lyr = vec_ds.GetLayer()
geot = ras_ds.GetGeoTransform()
proj = ras_ds.GetProjection() # Get the projection from original tiff (fn_ras)
geot
(342940.8074133941, 0.18114600000000536, 0.0, 3325329.401211367, 0.0, -0.1811459999999247)
Open the shapefile feature to edit in it
layerdefinition = lyr.GetLayerDefn()
feature = ogr.Feature(layerdefinition)
feature.GetFieldIndex
make you to know the id of a specific field name you want to read/edit/delete
schema = []
for n in range(layerdefinition.GetFieldCount()):
fdefn = layerdefinition.GetFieldDefn(n)
schema.append(fdefn.name)
yy = feature.GetFieldIndex("MLDS")
if yy < 0:
print("MLDS field not found, we will create one for you and make all values to 1")
else:
lyr.DeleteField(yy)
add new field to the shapefile with a default value "1"
and don't forget to close feature after the edits
new_field = ogr.FieldDefn("MLDS", ogr.OFTInteger)
lyr.CreateField(new_field)
for feature in lyr:
feature.SetField("MLDS", 1)
lyr.SetFeature(feature)
feature = None
Set the projection from original tiff (fn_ras) to the rasterized tiff
drv_tiff = gdal.GetDriverByName("GTiff")
chn_ras_ds = drv_tiff.Create(
output, ras_ds.RasterXSize, ras_ds.RasterYSize, 1, gdal.GDT_Byte)
chn_ras_ds.SetGeoTransform(geot)
chn_ras_ds.SetProjection(proj)
chn_ras_ds.FlushCache()
gdal.RasterizeLayer(chn_ras_ds, [1], lyr, burn_values=[1], options=["ATTRIBUTE=MLDS"])
chn_ras_ds = None
vec_ds = None
DONE
ds = gdal.Open(fn_ras)
gt = ds.GetGeoTransform()
get coordinates of upper left corner
xmin = gt[0]
ymax = gt[3]
resx = gt[1]
res_y = gt[5]
resy = abs(res_y)
import math
import os.path as osp
the tile size i want (may be 256×256 for smaller memory size)
needed_out_x = 512
needed_out_y = 512
round up to the nearest int
xnotround = ds.RasterXSize / needed_out_x
xround = math.ceil(xnotround)
ynotround = ds.RasterYSize / needed_out_y
yround = math.ceil(ynotround)
print(xnotround)
print(xround)
print(ynotround)
print(yround)
9.30078125 10 5.689453125 6
pixel to meter - 512×10×0.18
pixtomX = needed_out_x * xround * resx
pixtomy = needed_out_y * yround * resy
print (pixtomX)
print (pixtomy)
927.4675200000274 556.4805119997686
size of a single tile
xsize = pixtomX / xround
ysize = pixtomy / yround
print (xsize)
print (ysize)
92.74675200000274 92.74675199996143
create lists of x and y coordinates
xsteps = [xmin + xsize * i for i in range(xround + 1)]
ysteps = [ymax - ysize * i for i in range(yround + 1)]
xsteps
[342940.8074133941, 343033.5541653941, 343126.3009173941, 343219.0476693941, 343311.7944213941, 343404.54117339413, 343497.28792539414, 343590.03467739414, 343682.78142939415, 343775.5281813941, 343868.2749333941]
set the output path
cdpath = "DataSet/image/"
loop over min and max x and y coordinates
for i in range(xround):
for j in range(yround):
xmin = xsteps[i]
xmax = xsteps[i + 1]
ymax = ysteps[j]
ymin = ysteps[j + 1]
# gdal translate to subset the input raster
gdal.Translate(osp.join(cdpath, \
(str("01") + "-" + str(j) + "-" + str(i) + "." + "jpg")),
ds,
projWin=(abs(xmin), abs(ymax), abs(xmax), abs(ymin)),
xRes=resx,
yRes=-resy,
outputType=gdal.gdalconst.GDT_Byte,
format="JPEG")
ds = None
For all data that is not divided into training set, validation set, and test set, PaddleSeg provides a script to generate segmented data and generate a file list.
The data file structure is as follows:
./dataset/ # Dataset root directory
|--images # Original image catalog
| |--xxx1.jpg (xx1.png)
| |--...
| └--...
|
|--annotations # Annotated image catalog
| |--xxx1.png
| |--...
| └--...
Among them, the corresponding file name can be defined according to needs.
The commands used are as follows, which supports enabling specific functions through different Flags.
python tools/split_dataset_list.py <dataset_root> <images_dir_name> <labels_dir_name> ${FLAGS}
Parameters:
FLAGS:
FLAG | Meaning | Default | Parameter numbers |
---|---|---|---|
--split | Dataset segmentation ratio | 0.7 0.3 0 | 3 |
--separator | File list separator | "|" | 1 |
--format | Data format of pictures and label sets | "jpg" "png" | 2 |
--label_class | Label category | '__background__' '__foreground__' | several |
--postfix | Filter pictures and label sets according to whether the main file name (without extension) contains the specified suffix | "" ""(2 null characters) | 2 |
After running, train.txt
, val.txt
, test.txt
and labels.txt
will be generated in the root directory of the dataset.
Note: Requirements for generating the file list: either the original image and the number of annotated images are the same, or there is only the original image without annotated images. If the dataset lacks annotated images, a file list without separators and annotated image paths will be generated.
python tools/split_dataset_list.py <dataset_root> images annotations --split 0.6 0.2 0.2 --format jpg png
The contents of train.txt and val.txt are as follows:
images/image1.jpg labels/label1.png
images/image2.jpg labels/label2.png
...
Full Docs : https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.3/docs/data/custom/data_prepare.md
import sys
import subprocess
if in docker/ubuntu run this
! python split_dataset_list.py DataSet image label --format jpg png
Creating train.txt... image/01-3-3.jpg label/01-3-3.png image/01-5-5.jpg label/01-5-5.png image/01-0-7.jpg label/01-0-7.png image/01-0-9.jpg label/01-0-9.png image/01-5-9.jpg label/01-5-9.png image/01-5-3.jpg label/01-5-3.png image/01-5-7.jpg label/01-5-7.png image/01-4-5.jpg label/01-4-5.png image/01-4-3.jpg label/01-4-3.png image/01-1-0.jpg label/01-1-0.png image/01-1-1.jpg label/01-1-1.png image/01-0-6.jpg label/01-0-6.png image/01-5-0.jpg label/01-5-0.png image/01-4-8.jpg label/01-4-8.png image/01-2-1.jpg label/01-2-1.png image/01-5-8.jpg label/01-5-8.png image/01-0-5.jpg label/01-0-5.png image/01-2-9.jpg label/01-2-9.png image/01-0-2.jpg label/01-0-2.png image/01-3-1.jpg label/01-3-1.png image/01-1-6.jpg label/01-1-6.png image/01-4-9.jpg label/01-4-9.png image/01-0-0.jpg label/01-0-0.png image/01-3-5.jpg label/01-3-5.png image/01-0-4.jpg label/01-0-4.png image/01-4-1.jpg label/01-4-1.png image/01-2-7.jpg label/01-2-7.png image/01-2-4.jpg label/01-2-4.png image/01-2-6.jpg label/01-2-6.png image/01-1-9.jpg label/01-1-9.png image/01-1-4.jpg label/01-1-4.png image/01-3-7.jpg label/01-3-7.png image/01-1-5.jpg label/01-1-5.png image/01-3-6.jpg label/01-3-6.png image/01-1-3.jpg label/01-1-3.png image/01-2-5.jpg label/01-2-5.png image/01-2-3.jpg label/01-2-3.png image/01-4-7.jpg label/01-4-7.png image/01-0-8.jpg label/01-0-8.png image/01-0-1.jpg label/01-0-1.png image/01-1-7.jpg label/01-1-7.png image/01-3-2.jpg label/01-3-2.png Creating val.txt... image/01-2-8.jpg label/01-2-8.png image/01-4-0.jpg label/01-4-0.png image/01-5-6.jpg label/01-5-6.png image/01-5-4.jpg label/01-5-4.png image/01-1-2.jpg label/01-1-2.png image/01-3-8.jpg label/01-3-8.png image/01-5-2.jpg label/01-5-2.png image/01-1-8.jpg label/01-1-8.png image/01-0-3.jpg label/01-0-3.png image/01-4-4.jpg label/01-4-4.png image/01-4-6.jpg label/01-4-6.png image/01-5-1.jpg label/01-5-1.png image/01-2-0.jpg label/01-2-0.png image/01-3-9.jpg label/01-3-9.png image/01-3-4.jpg label/01-3-4.png image/01-4-2.jpg label/01-4-2.png image/01-2-2.jpg label/01-2-2.png image/01-3-0.jpg label/01-3-0.png Creating test.txt...
if on windows run but first defien your root, image, and label folders
theproc = subprocess.Popen([
"python",
r"C:\Users\Youss\Documents\pp\New folder\split-rs-data\split_dataset_list.py", #Split text py script
r"C:\Users\Youss\Documents\pp\New folder\split-rs-data\DataSet", # Root DataSet ath
r"C:\Users\Youss\Documents\pp\New folder\split-rs-data\DataSet\image", #images path
r"C:\Users\Youss\Documents\pp\New folder\split-rs-data\DataSet\label",
# "--split",
# "0.6", # 60% training
# "0.2", # 20% validating
# "0.2", # 20% testing
"--format",
"jpg",
"png"])
theproc.communicate()
! pip install -q paddleseg
# Create data_list.txt
import os
import random
from PIL import Image
def create_list(data_path):
image_path = os.path.join(data_path, 'image')
label_path = os.path.join(data_path, 'label')
data_names = os.listdir(image_path)
random.shuffle(data_names) # Scramble data
with open(os.path.join(data_path, 'train.txt'), 'w') as tf:
with open(os.path.join(data_path, 'val.txt'), 'w') as vf:
for idx, data_name in enumerate(data_names):
img = os.path.join('image', data_name)
lab = os.path.join('label', data_name.replace('jpg', 'png'))
if idx % 9 == 0: # 90% as the training set
vf.write(img + ' ' + lab + '\n')
else:
tf.write(img + ' ' + lab + '\n')
print('Data list generation completed')
data_path = 'DataSet'
# create_list(data_path) # Generate data list
# Prepare dataset
import paddleseg.transforms as T
from paddleseg.datasets import Dataset
# Build the training set
train_transforms = [
T.RandomHorizontalFlip(),
T.RandomVerticalFlip(),
T.RandomRotation(),
T.RandomScaleAspect(),
T.RandomDistort(),
T.Resize(target_size=(512, 512)),
T.Normalize()
]
train_dataset = Dataset(
transforms=train_transforms,
dataset_root='DataSet',
num_classes=2,
mode='train',
train_path='DataSet/train.txt',
separator=' '
)
# Build validation set
val_transforms = [
T.Resize(target_size=(512, 512)),
T.Normalize()
]
val_dataset = Dataset(
transforms=val_transforms,
dataset_root='DataSet',
num_classes=2,
mode='val',
val_path='DataSet/val.txt',
separator=' '
)
# View data
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
for img, lab in train_dataset:
print(img.shape, lab.shape)
print(np.unique(lab))
plt.subplot(121);plt.imshow(img.transpose((1, 2, 0)))
plt.subplot(122);plt.imshow(lab)
break
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
(3, 512, 512) (512, 512) [ 0 255]
import paddle
from paddleseg.models import OCRNet, HRNet_W18
from paddleseg.models.losses import MixedLoss, BCELoss, DiceLoss
base_lr=3e-4
iters=100
batch_size=8
model = OCRNet(num_classes=2,
backbone=HRNet_W18(pretrained="https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz"),
backbone_indices=[0])
lr = paddle.optimizer.lr.PolynomialDecay(base_lr, decay_steps=iters//5, power=0.9)
optimizer = paddle.optimizer.Adam(lr, parameters=model.parameters())
losses = {}
losses['types'] = [MixedLoss([BCELoss(), DiceLoss()], [1, 1])] * 2
losses['coef'] = [1] * 2
2021-12-04 03:06:17 [INFO] Loading pretrained model from https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz Connecting to https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz Downloading hrnet_w18_ssld.tar.gz [==================================================] 100.00% Uncompress hrnet_w18_ssld.tar.gz [==================================================] 100.00% 2021-12-04 03:07:13 [INFO] There are 1525/1525 variables loaded into HRNet.
if you have nvidia gpu with cuda drivers installed you can check it
import os
os.environ["CUDA_DEVICE_ORDER"] = "0"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
## nvidia-smi
from paddleseg.core import train
train(
model=model,
train_dataset=train_dataset,
val_dataset=val_dataset,
optimizer=optimizer,
save_dir='output',
iters=iters,
batch_size=batch_size,
save_interval=iters//5,
log_iters=10,
num_workers=0,
losses=losses,
use_vdl=True)
/usr/local/lib/python3.8/site-packages/paddle/nn/layer/norm.py:652: UserWarning: When training, we now always track global mean and variance. warnings.warn(
import paddle
from paddleseg.models import UNetPlusPlus
import paddleseg.transforms as T
from paddleseg.datasets import Dataset
from paddleseg.core import evaluate
def eval_model(model_path=None):
# Network definition
model = UNetPlusPlus(in_channels=3, num_classes=2, use_deconv=True)
if model_path is not None:
para_state_dict = paddle.load(model_path)
model.set_dict(para_state_dict)
# Build validation set
val_transforms = [
T.Resize(target_size=(512, 512)),
T.Normalize()
]
val_dataset = Dataset(
transforms=val_transforms,
dataset_root='DataSet',
num_classes=2,
mode='val',
val_path='DataSet/val.txt',
separator=' ',
)
evaluate(
model,
val_dataset
)
eval_model(model_path='output/model_kp0.9085/model.pdparams')
2021-12-03 18:51:50 [INFO] Start evaluating (total_samples: 18, total_iters: 18)...
18/18 [==============================] - 266s 15s/step - batch_cost: 14.7635 - reader cost: 0.0026
2021-12-03 18:56:15 [INFO] [EVAL] #Images: 18 mIoU: 0.1116 Acc: 0.2231 Kappa: 0.0000 2021-12-03 18:56:15 [INFO] [EVAL] Class IoU: [0.2231 0. ] 2021-12-03 18:56:15 [INFO] [EVAL] Class Acc: [1. 0.]
import numpy as np
import paddle
from PIL import Image
from paddleseg.models import UNetPlusPlus
import paddleseg.transforms as T
from paddleseg.core import infer
import matplotlib.pyplot as plt
def nn_infer(img_path, lab_path, model_path='output/model_kp0.9085/model.pdparams', show=True):
# Network definition
model = UNetPlusPlus(in_channels=3, num_classes=2, use_deconv=True)
if model_path is not None:
para_state_dict = paddle.load(model_path)
model.set_dict(para_state_dict)
# forecast result
transforms = T.Compose([
T.Resize(target_size=(512, 512)),
T.Normalize()
])
img, lab = transforms(img_path, lab_path)
img = paddle.to_tensor(img[np.newaxis, :])
pre = infer.inference(model, img)
pred = paddle.argmax(pre, axis=1).numpy().reshape((512, 512))
if show:
plt.figure(figsize=(15, 45))
plt.subplot(131);plt.imshow(Image.open(img_path));plt.xticks([]);plt.yticks([]);plt.title('Image')
plt.subplot(132);plt.imshow(lab.astype('uint8'));plt.xticks([]);plt.yticks([]);plt.title('Label')
plt.subplot(133);plt.imshow(pred.astype('uint8'));plt.xticks([]);plt.yticks([]);plt.title('Prediction')
plt.show()
return pred.astype('uint8')
name = '01-2-7'
img_path = 'DataSet/image//' + name + '.jpg'
lab_path = 'DataSet/label//' + name + '.png'
_ = nn_infer(img_path, lab_path)
import cv2
def build_extracter(
img_path,
model_path='output/model_kp0.9085/model.pdparams',
threshold_area=200, # Remove the small threshold of the Unicom area
threshold_area_simplify=5, # Boundary simplification factor
open_comput=False, # Whether to open
open_kernel_size=9, # Core size for open operation
show=True
):
cv_img = nn_infer(img_path, lab_path, model_path, show=False)
cv_img = np.uint8(~(cv_img.astype(bool)))
# Open operation
if open_comput:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (open_kernel_size, open_kernel_size))
cv_img = cv2.morphologyEx(cv_img, cv2.MORPH_OPEN, kernel)
contours, _ = cv2.findContours(cv_img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
bods = []
for contour in contours:
area = cv2.contourArea(contour)
if area > threshold_area: # Screen the small connecting area
out = cv2.approxPolyDP(contour, threshold_area_simplify, True) # 简化形状
bods.append(out)
if show:
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
cimg = cv2.drawContours(img, bods, -1, (255, 0, 0), 2)
plt.figure(figsize=(10, 10))
plt.title('Building boundary')
plt.imshow(cimg);plt.xticks([]);plt.yticks([])
plt.show()
return bods
conts = build_extracter(img_path)