# nbi:hide_in
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (10, 5)
n=100 #number of samples
# intsize the number of class intervals
class_num = 20
mean = 2
sigma = 3
mean0 = 0
sigma0 = 1
data = np.random.randn(n) * sigma + mean
MLEmean = np.mean(data)
MLEvar = np.var(data)
tau2 = 1/(1/sigma0**2 + n/sigma**2)
Bmean = tau2 * ((1/sigma0**2) * mean0 + (n/sigma**2) * MLEmean)
MLEmean
1.9862542831542378
MLEvar
1.003830134035163
# nbi:hide_in
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (10, 5)
n=100 #number of samples
# intsize the number of class intervals
class_num = 20
mean = 2
sigma = 3
mean0 = 0
sigma0 = 1
data = np.random.randn(n) * sigma + mean
MLEmean = np.mean(data)
MLEvar = np.var(data)
tau2 = 1/(1/sigma0**2 + n/sigma**2)
Bmean = tau2 * ((1/sigma0**2) * mean0 + (n/sigma**2) * MLEmean)