import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_excel('https://o2.eas.gatech.edu/data/ATL_MonMeanTemp_1879_2020.xls',skiprows=1)
df # display the dataFrame
Year | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1879 | 44.3 | 43.7 | 57.6 | 58.9 | 69.8 | 74.9 | 79.6 | 73.9 | 68.7 | 64.3 | 53.9 | 51.5 |
1 | 1880 | 54.3 | 51.4 | 55.5 | 63.4 | 71.0 | 76.5 | 79.2 | 76.8 | 69.4 | 60.8 | 47.2 | 42.1 |
2 | 1881 | 40.1 | 46.6 | 49.1 | 59.1 | 70.8 | 77.8 | 81.1 | 78.8 | 75.5 | 67.2 | 52.6 | 49.6 |
3 | 1882 | 48.8 | 52.4 | 57.4 | 64.8 | 66.1 | 76.6 | 75.9 | 75.8 | 71.7 | 65.8 | 51.1 | 41.4 |
4 | 1883 | 43.0 | 50.2 | 50.2 | 61.6 | 67.4 | 76.4 | 80.1 | 76.2 | 71.3 | 66.0 | 53.7 | 48.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
137 | 2016 | 42.4 | 48.5 | 60.5 | 64.1 | 71.1 | 81.0 | 83.4 | 82.7 | 78.8 | 69.6 | 58.9 | 48.9 |
138 | 2017 | 52.0 | 56.1 | 57.7 | 67.8 | 71.1 | 76.6 | 81.2 | 79.2 | 73.8 | 65.7 | 56.2 | 46.8 |
139 | 2018 | 40.4 | 57.3 | 53.5 | 59.8 | 74.8 | 79.8 | 80.8 | 79.7 | 81.0 | 67.4 | 50.3 | 48.6 |
140 | 2019 | 45.9 | 53.8 | 55.4 | 65.3 | 76.4 | 77.7 | 82.2 | 82.5 | 82.4 | 68.4 | 52.5 | 51.2 |
141 | 2020 | 49.2 | 49.9 | 61.6 | 61.6 | 68.9 | 76.8 | 82.1 | 80.9 | 73.8 | 67.3 | 58.9 | 46.1 |
142 rows × 13 columns
MonMeanTemp=df.to_numpy()
X=MonMeanTemp[:,0] # X is Year
Y=MonMeanTemp[:,8] # Y is August temperature
# linear regression using pseudo inverse OR left divide
N=np.size(X)
m=21
A=np.zeros((N,m))
z=(X-np.mean(X))/np.std(X) # z-transform x axis
for n in np.arange(0,m):
A[:,n]=z**n
#x = np.linalg.lstsq(A,Aug,rcond=None)[0]
Apinv=np.linalg.pinv(A)
#Apinv=np.linalg.inv(A.T@A)@A.T
x=Apinv@Y
#polyfit
C=np.polyfit(z,Y,m-1)
# calculate Yest
Yest=A@x
Yest2=np.poly1d(C)
# plot the line
plt.plot(X,Y)
plt.plot(X,Yest)
plt.plot(X,Yest2(z),'--')
plt.xlabel('time')
plt.ylabel('Atlanta August temperature, deg F')
plt.legend(['Original data','pinv','polyfit'])
plt.show()
# 10th order polynomial fit
C=np.polyfit(z,Y,10)
yest=np.poly1d(C)
plt.plot(X,Y,'-')
plt.plot(X,yest(z),'--')
plt.xlabel('time')
plt.ylabel('Atlanta August temperature, deg F')
plt.show()
from scipy import signal
m=5
Ym = signal.convolve(Y,np.ones(m),'valid')/m
hm=2
plt.plot(X,Y)
plt.plot(X[hm:-hm],Ym)
plt.xlabel('time')
plt.ylabel('Atlanta August temperature, deg F')
plt.show()
Yhat = np.fft.fft(Y) # get Fourier coefficients
N = np.size(Y)
freq = np.fft.fftfreq(N) # get frequency axis
pd=1/freq # calculate the period
mask= (pd < 5) # logical index with period < 5 yr
Yhat[mask]=0
Ylf=np.fft.ifft(Yhat)
<ipython-input-11-15a6544ffb10>:1: RuntimeWarning: divide by zero encountered in true_divide pd=1/freq # calculate the period
plt.plot(X,Y)
plt.plot(X[hm:-hm],Ym)
plt.plot(X,np.real(Ylf))
plt.xlabel('time')
plt.ylabel('Atlanta August temperature, deg F')
plt.legend(['Original data','5-yr running mean','5-yr FFT filter'])
plt.show()
import matplotlib.image as mpimg
img = mpimg.imread('flower.png') # get the picture of a flower
img0=img[:,:,0] # just extract one color
plt.imshow(img0,cmap='gray')
plt.show()
N=np.shape(img0)
print('the size of image array is ',str(N))
the size of image array is (1092, 1122)
# apply fft and retain low frequency component only
imghat=np.fft.fft2(img0)
M=50 # M lowest frequencies only
iM=imghat
iM[M:-M,:]=0 # truncate rows
iM[:,M:-M]=0 # truncate columns
img1=np.fft.ifft2(iM)
plt.imshow(np.real(img1),cmap='gray')
print('the image compression is '+str(100-4*M**2/(N[0]*N[1])*100)+' percent')
plt.show()
the image compression is 99.18382271323448 percent