• JUPYTER
  • FAQ
  • View as Code
  • View on GitHub
  • Execute on Binder
  • Download Notebook
  1. tutorials
  2. pandas
  • pandas Dataframe - Basic Operativity
    • 1 File I/O and DataFrame Generation
      • 1.1 Create DataFrames with read_csv
      • 1.2 Create DataFrames from Python Dictionaries
      • 1.3 Create DataFrames from Items
      • 1.4 Create DataFrames fron Numpy Arrays
      • 1.5 DataFrames can be converted in Numpy Arrays
      • 1.6 DataFrames, Series and Panels
    • 2 Automatic Data Alignment
    • 3 Indexing
      • 3.1 Label-Based Indexing
      • 3.2 Position-Based Indexing
      • 3.3 Advanced Indexing - .ix
    • 4 DataFrame Basic Operations
      • 4.1 Reindex/Reorder rows and columns
      • 4.2 Calculate new columns
      • 4.3 Deleting rows and columns
      • 4.4 Inserting colums in a specific position
      • 4.5 Check if a value or a list of given values are contained in a specific column
      • 4.6 Rename columns
      • 4.7 Iterate efficiently through rows
    • 5 Duplicated Data
      • 5.1 Find duplicated data in columns
      • 5.2 Remove Duplicates
    • 6 Working with Large Arrays
      • 6.1 Control the DataFrame memory occupation
      • 6.2 Explore large arrays
    • 7 Column pct_change and shift
    • 8 Reindex
    • 9 More on Indexing: Multi Index
    • 10 Package Options
  • pandas I/O tools and examples
    • 1 Matlab Variables
      • 1.1 Import a Matlab variable from file
    • 2 Importing a compressed CSV
    • 3 Importing and visualizing geographical data
    • 4 Importing JSON files
    • 5 Importing HTML
    • 6 Importing Excel
    • 7 Working with SQL and databases
      • 7.1 Write SQL
      • 7.2 Import SQL
    • 8 Working with HDF5
      • 8.1 Storer format
      • 8.2 Table format
      • 8.3 Querying a Table
  • Pandas Time series
    • 1 Timestamps and DatetimeIndex
    • 2 DateOffsets objects
    • 3 Indexing with a DateTime index
    • 4 Frequency conversion
    • 5 Filling gaps
  • Statistical tools
    • 1 Percent change
    • 2 Covariance
    • 3 Correlation
    • 4 Rolling moments and Binary rolling moments
    • 5 A pratical example: Return indexes and cumulative returns
  • Merge and pivot
    • 1 Concat
    • 2 Append
    • 3 Join
    • 4 Merge
    • 5 Pivoting
    • 6 Stack and Unstack
  • Split apply and combine
    • 1 Groupby
    • 2 Aggregate
    • 3 Apply
    • 4 A pratical example: Normalize by year
    • 5 A practical example: Group and standardize by dimension
  • Sources of Open Data
    • 1 Yahoo! Finance
      • 1.1 Plotting timeseries with bokeh:
      • 1.2 Plotting candlesticks with bokeh:
      • 1.3 Plotting data ranges with bokeh:
      • 1.4 Plotting multiple plots with matplotlib:
    • 2 Google Finance
    • 3 Federal Reserve Economic Data
    • 4 World Bank
  • Baby Names
    • 1 Load and prepare the data
    • 2 Pivoting
    • 3 Splitting
    • 4 Using 'groupby'

This website does not host notebooks, it only renders notebooks available on other websites.

Delivered by Fastly, Rendered by OVHcloud

nbviewer GitHub repository.

nbviewer version: d25d3c3

nbconvert version: 5.6.1

Rendered (Thu, 18 Aug 2022 09:59:11 UTC)