This is a simple notebook displaying some of the results visualisation functionalities available in aeon.
This is in-progress, and does not contain detailed descriptions and documentation yet.
import numpy as np
classifiers = ["Classifier 1", "Classifier 2", "Classifier 3", "Classifier 4"]
classifier_accuracies = [
[0.8, 0.7, 0.6, 0.5],
[0.7, 0.9, 0.4, 0.0],
[0.8, 0.7, 0.6, 0.5],
[0.7, 0.9, 0.4, 0.0],
[0.7, 0.6, 0.5, 0.4],
]
regressor_preds = [0.8, 0.7, 0.6, 0.5]
regressor_targets = [0.9, 0.7, 0.4, 0.0]
from aeon.visualisation import plot_critical_difference
_ = plot_critical_difference(classifier_accuracies, classifiers)
from aeon.visualisation import (
plot_pairwise_scatter,
plot_scatter_predictions,
plot_score_vs_time_scatter,
)
_ = plot_pairwise_scatter(
classifier_accuracies[0], classifier_accuracies[1], classifiers[0], classifiers[1]
)
_ = plot_scatter_predictions(regressor_targets, regressor_preds, title="Regressor 1")
_ = plot_score_vs_time_scatter(
np.mean(classifier_accuracies, axis=0),
[9000, 4000, 1500, 100],
names=classifiers,
title="Score vs Time",
log_time=True,
)
from aeon.visualisation import plot_boxplot_median
_ = plot_boxplot_median(
classifier_accuracies, classifiers, plot_type="boxplot", title="Boxplot"
)