
This document contains all the equations in the book Hands-On Machine Learning with
Scikit-Learn, Keras and TensorFlow (O’Reilly, second edition). This may be useful if you
are experiencing difficulties viewing the equations on your Kindle or other device.

CHAPTER 1

The Machine Learning Landscape

Equation 1-1. A simple linear model
life_satisfaction = θ0 + θ1 × GDP_per_capita

3

CHAPTER 2

End-to-End Machine Learning Project

Equation 2-1. Root Mean Square Error (RMSE)

RMSE X, h = 1
m ∑

i = 1

m
h x i − y i 2

The following equations are located in the “Notations” sidebar, on page 40, in the “Select
a performance measure” section:

x 1 =

−118.29
33.91
1,416

38,372

and:

y 1 = 156,400

5

X =

x 1 ⊺

x 2 ⊺

⋮

x 1999 ⊺

x 2000 ⊺

=
−118.29 33.91 1,416 38,372
⋮ ⋮ ⋮ ⋮

Equation 2-2. Mean absolute error (MAE)

MAE X, h = 1
m ∑

i = 1

m
h x i − y i

6 | Chapter 2: End-to-End Machine Learning Project

CHAPTER 3

Classification

Equation 3-1. Precision

precision = TP
TP + FP

Equation 3-2. Recall

recall = TP
TP + FN

Equation 3-3. F1 score

F1 = 2
1

precision + 1
recall

= 2 × precision × recall
precision + recall = TP

TP + FN + FP
2

7

CHAPTER 4

Training Models

Equation 4-1. Linear Regression model prediction

y = θ0 + θ1x1 + θ2x2 +⋯ + θnxn

Equation 4-2. Linear Regression model prediction (vectorized form)

y = hθ x = θ · x

The following note is located in the “Linear Regression” section, on page 113:

In Machine Learning, vectors are often represented as column vec‐
tors, which are 2D arrays with a single column. If θ and x are col‐
umn vectors, then the prediction is y = θ⊺x, where θ⊺ is the
transpose of θ (a row vector instead of a column vector) and θ⊺x is
the matrix multiplication of θ⊺ and x. It is of course the same pre‐
diction, except that it is now represented as a single-cell matrix
rather than a scalar value. In this book I will use this notation to
avoid switching between dot products and matrix multiplications.

Equation 4-3. MSE cost function for a Linear Regression model

MSE X, hθ = 1
m ∑

i = 1

m
θ⊺x i − y i 2

9

Equation 4-4. Normal Equation

θ = X⊺X −1 X⊺ y

The following paragraph is located in the “Normal Equation” section, on page 116:

This function computes θ = X+y, where �+ is the pseudoinverse of X (specifically,
the Moore-Penrose inverse).

The following paragraph is located in the “Normal Equation” section, on page 117:

The pseudoinverse itself is computed using a standard matrix factorization technique
called Singular Value Decomposition (SVD) that can decompose the training set
matrix X into the matrix multiplication of three matrices U Σ V⊺ (see
numpy.linalg.svd()). The pseudoinverse is computed as X+ = VΣ+U⊺. To compute
the matrix Σ+, the algorithm takes Σ and sets to zero all values smaller than a tiny
threshold value, then it replaces all the nonzero values with their inverse, and finally
it transposes the resulting matrix. This approach is more efficient than computing the
Normal Equation, plus it handles edge cases nicely: indeed, the Normal Equation may
not work if the matrix X⊺X is not invertible (i.e., singular), such as if m < n or if some
features are redundant, but the pseudoinverse is always defined.

Equation 4-5. Partial derivatives of the cost function

∂
∂θ j

MSE θ = 2
m ∑

i = 1

m
θ⊺x i − y i x j

i

10 | Chapter 4: Training Models

Equation 4-6. Gradient vector of the cost function

∇θ MSE θ =

∂
∂θ0

MSE θ

∂
∂θ1

MSE θ

⋮

∂
∂θn

MSE θ

= 2
mX⊺ Xθ − y

Equation 4-7. Gradient Descent step

θ next step = θ − η∇θ MSE θ

The following paragraph is located in the “Ridge Regression” section, on page 135:

Ridge Regression (also called Tikhonov regularization) is a regularized version of Lin‐
ear Regression: a regularization term equal to α∑i = 1

n θi
2 is added to the cost function.

Equation 4-8. Ridge Regression cost function

J θ = MSE θ + α 1
2 ∑i = 1

n θi
2

Equation 4-9. Ridge Regression closed-form solution

θ = X⊺X + αA −1 X⊺ y

Equation 4-10. Lasso Regression cost function

J θ = MSE θ + α∑i = 1
n θi

Training Models | 11

Equation 4-11. Lasso Regression subgradient vector

g θ, J = ∇θ MSE θ + α

sign θ1

sign θ2

⋮

sign θn

 where sign θi =

−1 if θi < 0

0 if θi = 0

+1 if θi > 0

Equation 4-12. Elastic Net cost function

J θ = MSE θ + rα∑i = 1
n θi + 1 − r

2 α∑i = 1
n θi

2

Equation 4-13. Logistic Regression model estimated probability (vectorized form)

p = hθ x = σ x⊺θ

Equation 4-14. Logistic function

σ t = 1
1 + exp − t

The following paragraph is located in the “Estimating Probabilities” section, on page 143:

Once the Logistic Regression model has estimated the probability p = hθ(x) that an
instance x belongs to the positive class, it can make its prediction ŷ easily (see Equa‐
tion 4-15).

Equation 4-15. Logistic Regression model prediction

y =
0 if p < 0.5
1 if p ≥ 0.5

Equation 4-16. Cost function of a single training instance

c θ =
−log p if y = 1

−log 1 − p if y = 0

12 | Chapter 4: Training Models

Equation 4-17. Logistic Regression cost function (log loss)

J θ = − 1
m ∑i = 1

m y i log p i + 1 − y i log 1 − p i

Equation 4-18. Logistic cost function partial derivatives

∂
∂θ j

J θ = 1
m ∑

i = 1

m
σ θ⊺x i − y i x j

i

Equation 4-19. Softmax score for class k

sk x = x⊺θ k

Equation 4-20. Softmax function

pk = σ s x k =
exp sk x

∑ j = 1
K exp s j x

Equation 4-21. Softmax Regression classifier prediction

y = argmax
k

σ s x k = argmax
k

sk x = argmax
k

θ k ⊺x

Equation 4-22. Cross entropy cost function

J Θ = − 1
m ∑i = 1

m ∑k = 1
K yk

i log pk
i

Equation 4-23. Cross entropy gradient vector for class k

∇
θ k J Θ = 1

m ∑
i = 1

m
pk

i − yk
i x i

Training Models | 13

CHAPTER 5

Support Vector Machines

Equation 5-1. Gaussian RBF

ϕγ x, ℓ = exp −γ∥ x − ℓ ∥2

Equation 5-2. Linear SVM classifier prediction

y =
0 if w⊺x + b < 0,

1 if w⊺x + b ≥ 0

Equation 5-3. Hard margin linear SVM classifier objective

minimize
w, b

1
2 w⊺w

subject to t i w⊺x i + b ≥ 1 for i = 1, 2,⋯, m

Equation 5-4. Soft margin linear SVM classifier objective

minimize
w, b, ζ

1
2w⊺w + C ∑

i = 1

m
ζ i

subject to t i w⊺x i + b ≥ 1 − ζ i and ζ i ≥ 0 for i = 1, 2,⋯, m

15

Equation 5-5. Quadratic Programming problem

Minimize
p

1
2 p⊺Hp + f⊺p

subject to Ap ≤ b

where

p is an np‐dimensional vector (np = number of parameters),

H is an np × np matrix,

f is an np‐dimensional vector,

A is an nc × np matrix (nc = number of constraints),

b is an nc‐dimensional vector.

Note that the expression A p ≤ b defines nc constraints: p⊺ a(i) ≤ b(i) for i = 1, 2, ⋯, nc,
where a(i) is the vector containing the elements of the ith row of A and b(i) is the ith

element of b.

You can easily verify that if you set the QP parameters in the following way, you get
the hard margin linear SVM classifier objective:

• np = n + 1, where n is the number of features (the +1 is for the bias term).
• nc = m, where m is the number of training instances.
• H is the np × np identity matrix, except with a zero in the top-left cell (to ignore

the bias term).
• f = 0, an np-dimensional vector full of 0s.
• b = –1, an nc-dimensional vector full of –1s.
• a(i) = –t(i) ẋ(i), where ẋ(i) is equal to x(i) with an extra bias feature ẋ0 = 1.

Equation 5-6. Dual form of the linear SVM objective

minimize
α

1
2 ∑

i = 1

m
∑

j = 1

m
α i α j t i t j x i ⊺x j − ∑

i = 1

m
α i

subject to α i ≥ 0 for i = 1, 2,⋯, m

16 | Chapter 5: Support Vector Machines

Once you find the vector α that minimizes this equation (using a QP solver), use
Equation 5-7 to compute w and b that minimize the primal problem.

Equation 5-7. From the dual solution to the primal solution

w = ∑
i = 1

m
α i t i x i

b = 1
ns

∑
i = 1

α i > 0

m
t i − w⊺x i

Equation 5-8. Second-degree polynomial mapping

ϕ x = ϕ
x1

x2
=

x1
2

2 x1x2

x2
2

Equation 5-9. Kernel trick for a second-degree polynomial mapping

ϕ a ⊺ϕ b =

a1
2

2 a1a2

a2
2

⊺ b1
2

2 b1b2

b2
2

= a1
2b1

2 + 2a1b1a2b2 + a2
2b2

2

= a1b1 + a2b2
2 =

a1

a2

⊺ b1

b2

2

= a⊺b 2

This paragraph is located in the “Kernelized SVMs” section, on page 170:

Here is the key insight: if you apply the transformation ϕ to all training instances,
then the dual problem (see Equation 5-6) will contain the dot product ϕ(x(i))⊺ ϕ(x(j)).
But if ϕ is the second-degree polynomial transformation defined in Equation 5-8,

then you can replace this dot product of transformed vectors simply by x i ⊺x j 2
. So,

you don’t need to transform the training instances at all; just replace the dot product
by its square in Equation 5-6. The result will be strictly the same as if you had gone
through the trouble of transforming the training set then fitting a linear SVM algo‐
rithm, but this trick makes the whole process much more computationally efficient.

Support Vector Machines | 17

Equation 5-10. Common kernels

Linear: K a, b = a⊺b

Polynomial: K a, b = γa⊺b + r d

Gaussian RBF: K a, b = exp −γ∥ a − b ∥2

Sigmoid: K a, b = tanh γa⊺b + r

Equation 5-11. Making predictions with a kernelized SVM

h
w, b

ϕ x n = w⊺ϕ x n + b = ∑
i = 1

m
α i t i ϕ x i

⊺

ϕ x n + b

= ∑
i = 1

m
α i t i ϕ x i ⊺ϕ x n + b

= ∑
i = 1

α i > 0

m
α i t i K x i , x n + b

Equation 5-12. Using the kernel trick to compute the bias term

b = 1
ns

∑
i = 1

α i > 0

m
t i − w⊺ϕ x i = 1

ns
∑

i = 1
α i > 0

m
t i − ∑

j = 1

m
α j t j ϕ x j

⊺

ϕ x i

= 1
ns

∑
i = 1

α i > 0

m
t i − ∑

j = 1
α j > 0

m
α j t j K x i , x j

Equation 5-13. Linear SVM classifier cost function

J w, b = 1
2w⊺w + C ∑

i = 1

m
max 0, 1 − t i w⊺x i + b

18 | Chapter 5: Support Vector Machines

CHAPTER 6

Decision Trees

Equation 6-1. Gini impurity

Gi = 1 − ∑
k = 1

n
pi, k

2

Equation 6-2. CART cost function for classification

J k, tk =
mleft

m Gleft +
mright

m Gright

where
Gleft/right measures the impurity of the left/right subset,

mleft/right is the number of instances in the left/right subset.

Equation 6-3. Entropy

Hi = − ∑
k = 1

pi, k ≠ 0

n
pi, k log2 pi, k

19

Equation 6-4. CART cost function for regression

J k, tk =
mleft

m MSEleft +
mright

m MSEright where
MSEnode =

∑i ∈ node ynode − y i 2

mnode

ynode =
∑i ∈ node y i

mnode

20 | Chapter 6: Decision Trees

CHAPTER 7

Ensemble Learning and Random Forests

Equation 7-1. Weighted error rate of the jth predictor

r j =

∑
i = 1

y j
i ≠ y i

m
w i

∑
i = 1

m
w i

where y j
i is the jth predictor’s prediction for the ith instance.

Equation 7-2. Predictor weight

α j = η log
1 − r j

r j

Equation 7-3. Weight update rule

for i = 1, 2,⋯, m

w i
w i if y j

i = y i

w i exp α j if y j
i ≠ y i

Then all the instance weights are normalized (i.e., divided by ∑i = 1
m w i).

21

Equation 7-4. AdaBoost predictions

y x = argmax
k

∑
j = 1

y j x = k

N
α j where N is the number of predictors.

22 | Chapter 7: Ensemble Learning and Random Forests

CHAPTER 8

Dimensionality Reduction

Equation 8-1. Principal components matrix

V =
∣ ∣ ∣

c1 c2 ⋯ cn

∣ ∣ ∣

Equation 8-2. Projecting the training set down to d dimensions
Xd‐proj = XWd

Equation 8-3. PCA inverse transformation, back to the original number of
dimensions

Xrecovered = Xd‐projWd
⊺

The following paragraph is located in the “LLE” section, on page 231:

Here’s how LLE works: for each training instance x(i), the algorithm identifies its k
closest neighbors (in the preceding code k = 10), then tries to reconstruct x(i) as a lin‐
ear function of these neighbors. More specifically, it finds the weights wi,j such that
the squared distance between x(i) and ∑ j = 1

m wi, jx
j is as small as possible, assuming wi,j

= 0 if x(j) is not one of the k closest neighbors of x(i). Thus the first step of LLE is the
constrained optimization problem described in Equation 8-4, where W is the weight

23

matrix containing all the weights wi,j. The second constraint simply normalizes the
weights for each training instance x(i).

Equation 8-4. LLE step one: linearly modeling local relationships

W = argmin
W

∑
i = 1

m
x i − ∑

j = 1

m
wi, jx

j
2

subject to
wi, j = 0 if x j is not one of the k c.n. of x i

∑
j = 1

m
wi, j = 1 for i = 1, 2,⋯, m

After this step, the weight matrix W (containing the weights wi, j) encodes the local
linear relationships between the training instances. The second step is to map the
training instances into a d-dimensional space (where d < n) while preserving these
local relationships as much as possible. If z(i) is the image of x(i) in this d-dimensional
space, then we want the squared distance between z(i) and ∑ j = 1

m wi, jz
j to be as small

as possible. This idea leads to the unconstrained optimization problem described in
Equation 8-5. It looks very similar to the first step, but instead of keeping the instan‐
ces fixed and finding the optimal weights, we are doing the reverse: keeping the
weights fixed and finding the optimal position of the instances’ images in the low-
dimensional space. Note that Z is the matrix containing all z(i).

Equation 8-5. LLE step two: reducing dimensionality while preserving relationships

Z = argmin
Z

∑
i = 1

m
z i − ∑

j = 1

m
wi, jz

j
2

24 | Chapter 8: Dimensionality Reduction

CHAPTER 9

Unsupervised Learning Techniques

The following bullet point is located in the “Centroid initialization methods”, on page
244:

• Take a new centroid c(i), choosing an instance x(i) with probability D � i 2
 /

∑ j = 1
m D � j 2

, where D(x(i)) is the distance between the instance x(i) and the clos‐
est centroid that was already chosen. This probability distribution ensures that
instances farther away from already chosen centroids are much more likely be
selected as centroids.

The following bullet point is located in the “Gaussian Mixtures” section, on page 260:

• If z(i)=j, meaning the ith instance has been assigned to the jth cluster, the location
x(i) of this instance is sampled randomly from the Gaussian distribution with
mean μ(j) and covariance matrix Σ(j). This is noted x i ∼ � μ j , Σ j .

Equation 9-1. Bayesian information criterion (BIC) and Akaike information
criterion (AIC)

BIC = log m p − 2 log L

AIC = 2p − 2 log L

25

Equation 9-2. Bayes’ theorem

p z X = posterior = likelihood × prior
evidence = p X z p z

p X

Equation 9-3. The evidence p(X) is often intractable

p X = ∫p X z p z dz

Equation 9-4. KL divergence from q(z) to p(z|X)

DKL q ∥ p = �q log q z
p z X

= �q log q z − log p z X

= �q log q z − log p z, X
p X

= �q log q z − log p z, X + log p X

= �q log q z − �q log p z, X + �q log p X

= �q log p X − �q log p z, X − �q log q z
= log p X − ELBO

where ELBO = �q log p z, X − �q log q z

26 | Chapter 9: Unsupervised Learning Techniques

CHAPTER 10

Introduction to Artificial Neural Networks
with Keras

Equation 10-1. Common step functions used in Perceptrons (assuming threshold =
0)

heaviside z =
0 if z < 0
1 if z ≥ 0

sgn z =
−1 if z < 0
0 if z = 0
+1 if z > 0

Equation 10-2. Computing the outputs of a fully connected layer
hW, b X = ϕ XW + b

Equation 10-3. Perceptron learning rule (weight update)

wi, j
next step = wi, j + η y j − y j xi

27

CHAPTER 11

Training Deep Neural Networks

Equation 11-1. Glorot initialization (when using the logistic activation function)

Normal distribution with mean 0 and variance σ2 = 1
fanavg

Or a uniform distribution between −r and + r, with r = 3
fanavg

Equation 11-2. ELU activation function

ELUα z =
α exp z − 1 if z < 0
z if z ≥ 0

Equation 11-3. Batch Normalization algorithm

1 . μB = 1
mB

∑
i = 1

mB
x i

2 . σB
2 = 1

mB
∑

i = 1

mB
x i − μB

2

3 . x i =
x i − μB

σB
2 + ε

4 . z i = γ⊗ x i + β

29

The following equation is located in the “Batch Normalization” section, on page 343:

v v × momentum + v × 1 − momentum

Equation 11-4. Momentum algorithm

1 . m βm − η∇θJ θ
2 . θ θ + m

Equation 11-5. Nesterov Accelerated Gradient algorithm

1 . m βm − η∇θJ θ + βm
2 . θ θ + m

Equation 11-6. AdaGrad algorithm

1 . s s +∇θJ θ ⊗∇θJ θ

2 . θ θ − η∇θJ θ ⊘ s + ε

The following paragraph is located in the “AdaGrad” section, on pages 354 and 355:

The second step is almost identical to Gradient Descent, but with one big difference:
the gradient vector is scaled down by a factor of s + ε (the ⊘ symbol represents the
element-wise division, and ε is a smoothing term to avoid division by zero, typically
set to 10–10). This vectorized form is equivalent to simultaneously computing
θi θi − η ∂J θ / ∂θi/ si + ε for all parameters θi.

Equation 11-7. RMSProp algorithm

1 . s βs + 1 − β ∇θJ θ ⊗∇θJ θ

2 . θ θ − η∇θJ θ ⊘ s + ε

30 | Chapter 11: Training Deep Neural Networks

Equation 11-8. Adam algorithm

1 . m β1m − 1 − β1 ∇θJ θ

2 . s β2s + 1 − β2 ∇θJ θ ⊗∇θJ θ

3 . m m
1 − β1

t

4 . s s
1 − β2

t

5 . θ θ + η m⊘ s + ε

Training Deep Neural Networks | 31

CHAPTER 12

Custom Models and Training
with TensorFlow

There are no equations in this chapter.

33

CHAPTER 13

Loading and Preprocessing Data
with TensorFlow

There are no equations in this chapter.

35

CHAPTER 14

Deep Computer Vision Using
Convolutional Neural Networks

Equation 14-1. Computing the output of a neuron in a convolutional layer

zi, j, k = bk + ∑
u = 0

f h − 1

∑
v = 0

f w − 1

∑
k′ = 0

f n′
− 1

xi′, j′, k′
× wu, v, k′, k with

i′ = i × sh + u

j′ = j × sw + v

Equation 14-2. Local response normalization (LRN)

bi = ai k + α ∑
j = jlow

jhigh
a j

2
−β

with
jhigh = min i + r

2 , f n − 1

jlow = max 0, i − r
2

37

CHAPTER 15

Processing Sequences Using
RNNs and CNNs

Equation 15-1. Output of a recurrent layer for a single instance

y t = ϕ Wx
⊺x t + Wy

⊺y t − 1 + b

Equation 15-2. Outputs of a layer of recurrent neurons for all instances in a mini-
batch

Y t = ϕ X t Wx + Y t − 1 Wy + b

= ϕ X t Y t − 1 W + b with W =
Wx

Wy

Equation 15-3. LSTM computations

i t = σ Wxi
⊺x t + Whi

⊺h t − 1 + bi

f t = σ Wx f
⊺x t + Wh f

⊺h t − 1 + b f

o t = σ Wxo
⊺x t + Who

⊺h t − 1 + bo

g t = tanh Wxg
⊺x t + Whg

⊺h t − 1 + bg

c t = f t ⊗ c t − 1 + i t ⊗ g t

y t = h t = o t ⊗ tanh c t

39

Equation 15-4. GRU computations

z t = σ Wxz
⊺x t + Whz

⊺h t − 1 + bz

r t = σ Wxr
⊺x t + Whr

⊺h t − 1 + br

g t = tanh Wxg
⊺x t + Whg

⊺ r t ⊗ h t − 1 + bg

h t = z t ⊗ h t − 1 + 1 − z t ⊗ g t

40 | Chapter 15: Processing Sequences Using RNNs and CNNs

CHAPTER 16

Natural Language Processing with
RNNs and Attention

Equation 16-1. Attention mechanisms

� t = ∑
i

α t, i � i

with α t, i =
exp e t, i

∑i′ exp e t, i′

and e t, i =

� t
⊺ � i dot

� t
⊺�� i general

�⊺ tanh � � t ; � i concat

Equation 16-2. Sine/cosine positional encodings

Pp, 2i = sin p/100002i/d

Pp, 2i + 1 = cos p/100002i/d

Equation 16-3. Scaled Dot-Product Attention

Attention Q, K, V = softmax QK⊺
dkeys

V

41

42

42 | Chapter 16: Natural Language Processing with RNNs and Attention

CHAPTER 17

Representation Learning and Generative
Learning Using Autoencoders and GANs

Equation 17-1. Kullback–Leibler divergence

DKL P ∥ Q = ∑
i

P i log P i
Q i

Equation 17-2. KL divergence between the target sparsity p and the actual sparsity q

DKL p ∥ q = p log p
q + 1 − p log 1 − p

1 − q

Equation 17-3. Variational autoencoder’s latent loss

ℒ = − 1
2 ∑

i = 1

n
1 + log σi

2 − σi
2 − μi

2

Equation 17-4. Variational autoencoder’s latent loss, rewritten using γ = log(σ2)

ℒ = − 1
2 ∑

i = 1

n
1 + γi − exp γi − μi

2

The following list item is located in the “Progressive Growing of GANs”, on page 603:

Representation Learning and Generative Learning Using Autoencoders and GANs | 43

Equalized learning rate
Initializes all weights using a simple Gaussian distribution with mean 0 and stan‐
dard deviation 1 rather than using He initialization. However, the weights are
scaled down at runtime (i.e., every time the layer is executed) by the same factor
as in He initialization: they are divided by 2/ninputs, where ninputs is the number
of inputs to the layer. \[…\]

44 | Chapter 17: Representation Learning and Generative Learning Using Autoencoders and GANs

CHAPTER 18

Reinforcement Learning

Equation 18-1. Bellman Optimality Equation

V* s = max
a ∑

s′
T s, a, s′ R s, a, s′ + γ · V* s′ for all s

Equation 18-2. Value Iteration algorithm

Vk + 1 s max
a ∑

s′
T s, a, s′ R s, a, s′ + γ · Vk s′ for all s

Equation 18-3. Q-Value Iteration algorithm

Qk + 1 s, a ∑
s′

T s, a, s′ R s, a, s′ + γ · max
a′

Qk s′, a′ for all s, a

Once you have the optimal Q-Values, defining the optimal policy, noted π*(s), is triv‐
ial: when the agent is in state s, it should choose the action with the highest Q-Value
for that state: π* s = argmax

a
Q* s, a .

45

Equation 18-4. TD Learning algorithm

Vk + 1 s 1 − α Vk s + α r + γ · Vk s′
or, equivalently:
Vk + 1 s Vk s + α · δk s, r, s′
with δk s, r, s′ = r + γ · Vk s′ − Vk s

The following paragraph is located in the “Temporal Difference Learning” on page 630:

A more concise way of writing the first form of this equation is to use the notation
a

α
b, which means ak+1 ← (1 – α) · ak + α ·bk. So, the first line of Equation 18-4 can

be rewritten like this: V s
α

r + γ · V s′ .

Equation 18-5. Q-Learning algorithm

Q s, a
α

r + γ · max
a′

 Q s′, a′

Equation 18-6. Q-Learning using an exploration function

Q s, a
α

r + γ · max
a′

 f Q s′, a′ , N s′, a′

Equation 18-7. Target Q-Value

Qtarget s, a = r + γ · max
a′

 Qθ s′, a′

46 | Chapter 18: Reinforcement Learning

CHAPTER 19

Training and Deploying TensorFlow
Models at Scale

There are no equations in this chapter.

47

APPENDIX A

Exercise Solutions

The following list item is the solution to exercise 7 from chapter 5, and is located on page
724:

• Let’s call the QP parameters for the hard margin problem H′, f′, A′, and b′ (see
“Quadratic Programming” on page 167). The QP parameters for the soft margin
problem have m additional parameters (np = n + 1 + m) and m additional con‐
straints (nc = 2m). They can be defined like so:
— H is equal to H′, plus m columns of 0s on the right and m rows of 0s at the

bottom: H =
H′ 0 ⋯
0 0
⋮ ⋱

— f is equal to f′ with m additional elements, all equal to the value of the hyper‐
parameter C.

— b is equal to b′ with m additional elements, all equal to 0.
— A is equal to A′, with an extra m × m identity matrix Im appended to the right,

–Im just below it, and the rest filled with 0s: A =
A′ Im

0 −Im

49

APPENDIX B

Machine Learning Project Checklist

There are no equations in this appendix.

51

APPENDIX C

SVM Dual Problem

The following paragraph is located on page 761:

In this example the partial derivatives are:

∂
∂x g x, y, α = 2x − 3α
∂

∂y g x, y, α = 2 − 2α
∂

∂α g x, y, α = − 3x − 2y − 1

Equation C-1. Generalized Lagrangian for the hard margin problem

ℒ w, b, α = 1
2w⊺w − ∑

i = 1

m
α i t i w⊺x i + b − 1

with α i ≥ 0 for i = 1, 2,⋯, m

The following paragraph is located on page 762:

Just like with the Lagrange multipliers method, you can compute the partial deriva‐
tives and locate the stationary points. If there is a solution, it will necessarily be
among the stationary points w, b , α that respect the KKT conditions:

• Respect the problem’s constraints: t i w⊺x i + b ≥ 1 for i = 1, 2, …, m.

• Verify α i ≥ 0 for i = 1, 2,⋯, m.

• Either α i = 0 or the ith constraint must be an active constraint, meaning it must
hold by equality: t i w⊺x i + b = 1. This condition is called the complementary

53

slackness condition. It implies that either α i = 0 or the ith instance lies on the
boundary (it is a support vector).

Equation C-2. Partial derivatives of the generalized Lagrangian

∇wℒ w, b, α = w − ∑
i = 1

m
α i t i x i

∂
∂bℒ w, b, α = − ∑

i = 1

m
α i t i

Equation C-3. Properties of the stationary points

w = ∑
i = 1

m
α i t i x i

∑
i = 1

m
α i t i = 0

Equation C-4. Dual form of the SVM problem

ℒ w, b , α = 1
2 ∑

i = 1

m
∑

j = 1

m
α i α j t i t j x i ⊺x j − ∑

i = 1

m
α i

with α i ≥ 0 for i = 1, 2,⋯, m

Equation C-5. Bias term estimation using the dual form

b = 1
ns

∑
i = 1

α i > 0

m
t i − w⊺x i

54 | Appendix C: SVM Dual Problem

APPENDIX D

Autodiff

Equation D-1. Partial derivatives of f(x, y)

∂ f
∂x =

∂ x2y
∂x + ∂y

∂x + ∂2
∂x = y

∂ x2

∂x + 0 + 0 = 2xy

∂ f
∂y =

∂ x2y
∂y + ∂y

∂y + ∂2
∂y = x2 + 1 + 0 = x2 + 1

Equation D-2. Definition of the derivative of a function h(x) at point x0

h′ x0 = lim
x x0

h x − h x0
x − x0

= lim
ε 0

h x0 + ε − h x0
ε

Equation D-3. A few operations with dual numbers
λ a + bε = λa + λbε
a + bε + c + dε = a + c + b + d ε

a + bε × c + dε = ac + ad + bc ε + bd ε2 = ac + ad + bc ε

55

Equation D-4. Chain rule

∂ f
∂x = ∂ f

∂ni
×

∂ni
∂x

56 | Appendix D: Autodiff

APPENDIX E

Other Popular ANN Architectures

Equation E-1. Probability that the ith neuron will output 1

p si
next step = 1 = σ

∑ j = 1
N wi, js j + bi

T

Equation E-2. Contrastive divergence weight update

wi, j wi, j + η xh⊺ − x′h′⊺

57

APPENDIX F

Special Data Structures

There are no equations in this appendix.

59

APPENDIX G

TensorFlow Graphs

There are no equations in this appendix.

61

	Chapter 1. The Machine Learning Landscape
	Chapter 2. End-to-End Machine Learning Project
	Chapter 3. Classification
	Chapter 4. Training Models
	Chapter 5. Support Vector Machines
	Chapter 6. Decision Trees
	Chapter 7. Ensemble Learning and Random Forests
	Chapter 8. Dimensionality Reduction
	Chapter 9. Unsupervised Learning Techniques
	Chapter 10. Introduction to Artificial Neural Networks with Keras
	Chapter 11. Training Deep Neural Networks
	Chapter 12. Custom Models and Training with TensorFlow
	Chapter 13. Loading and Preprocessing Data with TensorFlow
	Chapter 14. Deep Computer Vision Using Convolutional Neural Networks
	Chapter 15. Processing Sequences Using RNNs and CNNs
	Chapter 16. Natural Language Processing with RNNs and Attention
	Chapter 17. Representation Learning and Generative Learning Using Autoencoders and GANs
	Chapter 18. Reinforcement Learning
	Chapter 19. Training and Deploying TensorFlow Models at Scale
	Appendix A. Exercise Solutions
	Appendix B. Machine Learning Project Checklist
	Appendix C. SVM Dual Problem
	Appendix D. Autodiff
	Appendix E. Other Popular ANN Architectures
	Appendix F. Special Data Structures
	Appendix G. TensorFlow Graphs

