def r(l,d,f):import numpy as n;t=n.arange(-l/2,l/2,d);k=(n.pi*f*t)**2;return t,(1-2*k)/n.exp(k)
Now import the version in bruges
for comparison:
from bruges.filters import ricker
Plot the two together:
import matplotlib.pyplot as plt
%matplotlib inline
t, w = r(0.128, 0.004, 25)
plt.figure(figsize=(10,3))
plt.plot(t, ricker(0.128, 0.004, 25), 'o') # Compare to bruges.
plt.plot(t, w)
plt.xlim(-0.07, 0.07)
plt.show()
We can use the inspect
module ot compare the source code:
import inspect
inspect.getsource(r).strip()
'def r(l,d,f):import numpy as n;t=n.arange(-l/2,l/2,d);k=(n.pi*f*t)**2;return t,(1-2*k)/n.exp(k)'
len(inspect.getsource(r).strip())
95
len(inspect.getsource(ricker).strip())
1033
def o(l,d,f):import numpy as n;t=n.arange(-l/2,l/2,d);p=n.pi;f,g,h,i=f;λ=lambda ϕ,t:(n.sinc(ϕ*t)*p*ϕ)**2;A=(λ(i,t)-λ(h,t))/(i-h)-(λ(g,t)-λ(f,t))/(g-f);return t,A/max(A)
from bruges.filters import ormsby
import matplotlib.pyplot as plt
%matplotlib inline
t, w = o(0.128, 0.004, [8, 12, 60, 80])
plt.figure(figsize=(10,3))
plt.plot(t, ormsby(0.128, 0.004, [8, 12, 60, 80]), 'o') # Compare to bruges.
plt.plot(t, w)
plt.xlim(-0.07, 0.07)
plt.show()
inspect.getsource(r).strip()
'def r(l,d,f):import numpy as n;t=n.arange(-l/2,l/2,d);k=(n.pi*f*t)**2;return t,(1-2*k)/n.exp(k)'
len(inspect.getsource(o).strip())
168
len(inspect.getsource(ormsby).strip())
1545
def r(a,c,e,b,d,f,t):import numpy as n;w=f-e;x=f+e;y=d+c;p=n.pi*t/180;s=n.sin(p);return((w/x)-(y/a)**2*w/x*s**2+((b-a)/(b+a))/n.cos((p+n.arcsin(b/a*s))/2)**2-4*((y/2)/a)**2*((d-c)/(y/2))*s**2)
from bruges.reflection import akirichards
# 4-term Aki-Richards equation in 255 characters!
# http://subsurfwiki.org/wiki/Aki–Richards_equation
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
rock1 = (2300, 1200, 2500) # Vp, Vs, rho for layer 1
rock2 = (2400, 1250, 2450) # Vp, Vs, rho for layer 2
theta1 = np.arange(40)
result = r(*rock1, *rock2, np.arange(40))
plt.figure(figsize=(10,4))
plt.plot(akirichards(*rock1, *rock2, np.arange(40)), 'o')
plt.plot(result)
plt.show()
inspect.getsource(r).strip()
'def r(a,c,e,b,d,f,t):import numpy as n;w=f-e;x=f+e;y=d+c;p=n.pi*t/180;s=n.sin(p);return((w/x)-(y/a)**2*w/x*s**2+((b-a)/(b+a))/n.cos((p+n.arcsin(b/a*s))/2)**2-4*((y/2)/a)**2*((d-c)/(y/2))*s**2)'
len(inspect.getsource(r).strip())
192
len(inspect.getsource(akirichards).strip())
1828
From Dvorkin et al. (2014). Seismic Reflections of Rock Properties. Cambridge.
I can't find a way to get rid of any of the newlines or indents.
def z(α,β,ρ,χ,ψ,ω,t):import numpy as n;t=n.pi*t/180;C=n.cos;A=n.arcsin;S=n.sin;p=S(t)/α;u=A(p*χ);ϕ=A(p*β);υ=A(p*ψ);v=lambda w,x,y,z: y-2*y*S(z)**2+2*w*S(x)**2;a=ω-2*ω*S(υ)**2-ρ+2*ρ*S(ϕ)**2;b=v(ρ,ϕ,ω,υ);x=v(ω,υ,ρ,ϕ);d=2*(ω*ψ**2-ρ*β**2);E=b*C(t)/α+x*C(u)/χ;F=b*C(ϕ)/β+x*C(υ)/ψ;G=a-d*C(t)/α*C(υ)/ψ;H=a-d*C(u)/χ*C(ϕ)/β;return(F*(b*C(t)/α-x*C(u)/χ)-H*p**2*(a+d*C(t)/α*C(υ)/ψ))/(E*F+G*H*p**2)
from bruges.reflection import zoeppritz_rpp
result = z(*rock1, *rock2, np.arange(40))
plt.figure(figsize=(10,4))
plt.plot(zoeppritz_rpp(*rock1, *rock2, np.arange(40)), 'o')
plt.plot(result)
plt.show()
inspect.getsource(z).strip()
'def z(α,β,ρ,χ,ψ,ω,t):import numpy as n;t=n.pi*t/180;C=n.cos;A=n.arcsin;S=n.sin;p=S(t)/α;u=A(p*χ);ϕ=A(p*β);υ=A(p*ψ);v=lambda w,x,y,z: y-2*y*S(z)**2+2*w*S(x)**2;a=ω-2*ω*S(υ)**2-ρ+2*ρ*S(ϕ)**2;b=v(ρ,ϕ,ω,υ);x=v(ω,υ,ρ,ϕ);d=2*(ω*ψ**2-ρ*β**2);E=b*C(t)/α+x*C(u)/χ;F=b*C(ϕ)/β+x*C(υ)/ψ;G=a-d*C(t)/α*C(υ)/ψ;H=a-d*C(u)/χ*C(ϕ)/β;return(F*(b*C(t)/α-x*C(u)/χ)-H*p**2*(a+d*C(t)/α*C(υ)/ψ))/(E*F+G*H*p**2)'
len(inspect.getsource(z).strip())
386
len(inspect.getsource(zoeppritz_rpp).strip())
1198
© 2017 agilescientific.com and licensed CC-BY 4.0