This Notebook goes with a blog post, Corendering more attributes, at Agile Geoscience.
The idea is to reproduce the horizon used in Matt's post Colouring maps, but maybe not with the fold-modulating-opacity bit.
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline
amp_raw = np.loadtxt('data/FS4_Amp.txt')
sim_raw = np.loadtxt('data/FS4_Sim.txt')
np.amax(sim_raw)
1e+30
We need to deal with the null values, and turn them into NumPy NaNs.
nulls = np.amax(amp_raw)
np.place(amp_raw, amp_raw==nulls, np.nan)
np.place(sim_raw, sim_raw==nulls, np.nan)
np.amax(sim_raw)
nan
The 'raw' files are just long arrays with inline, xline, elevation (ms) and amplitude or similarity:
sim_raw[:3]
array([[ 1.04000000e+02, 3.02000000e+02, 1.12565780e+03, 8.71300000e-01], [ 1.04000000e+02, 3.03000000e+02, 1.12561238e+03, 8.98682000e-01], [ 1.04000000e+02, 3.04000000e+02, 1.12549269e+03, 8.95808000e-01]])
np.shape(sim_raw)
(592541, 4)
We need to find the inline and crossline extents to form a rectangular array representing an image.
for data in [amp_raw, sim_raw]:
ilinit, ilfin = np.amin(data[:,0]), np.amax(data[:,0])
xlinit, xlfin = np.amin(data[:,1]), np.amax(data[:,1])
nIL, nXL = ilfin-ilinit, xlfin-xlinit
print "inline range", ilinit, ilfin, "({} inlines)".format(ilfin - ilinit)
print "xline range", xlinit, xlfin, "({} xlines)".format(xlfin - xlinit)
print
inline range 104.0 748.0 (644.0 inlines) xline range 302.0 1248.0 (946.0 xlines) inline range 104.0 748.0 (644.0 inlines) xline range 302.0 1248.0 (946.0 xlines)
Now we can step over the 'raw' array from the file and extract inline, crossline, elevation, and amplitude. At the same time, we'll grab semblance from the other file, using the index of the line we're on.
z = np.empty((nIL, nXL))
amp = np.empty_like(z)
sim = np.empty_like(z)
for i, row in enumerate(amp_raw):
il = row[0] - ilinit - 1
xl = row[1] - xlinit - 1
zi = row[2]
ai = row[3]
si = sim_raw[i][3]
z[il, xl] = zi
amp[il, xl] = ai
sim[il, xl] = si
We'll use a square sub-region for the plots: 500 by 500 lines.
xmin, xmax = 0, 500
ymin, ymax = 400, 900
z = z[xmin: xmax, ymin: ymax]
amp = amp[xmin: xmax, ymin: ymax]
sim = sim[xmin: xmax, ymin: ymax]
z.shape
(500, 500)
Normalization to [0, 1] is needed for colour channel rendering:
def normalize(a):
return (a - np.amin(a)) / np.ptp(a)
znorm = normalize(z)
ampnorm = normalize(amp)
simnorm = normalize(sim)
Make a colourmap that Matteo will like... however we would like to back off the dark end a little, to leave 'room' for the similarity attribute's dark colours. Unfortunately the matplotlib
implementation of the cubehelix colourmap, which we could adapt into Matteo's LinearL, doesn't have the minLight
parameter, so we have to define a cubehelix function that does.
Please look away.
from matplotlib.colors import LinearSegmentedColormap as LSC
from math import pi
import numpy as np
def cubehelix(start=0.5, rot=-1.5, gamma=1.0, reverse=False, nlev=256., minSat=1.2, maxSat=1.2, minLight=0., maxLight=1., **kwargs):
# override start and rot if startHue and endHue are set
if kwargs is not None:
if 'startHue' in kwargs:
start = (kwargs.get('startHue') / 360. - 1.) * 3.
if 'endHue' in kwargs:
rot = kwargs.get('endHue') / 360. - start / 3. - 1.
if 'sat' in kwargs:
minSat = kwargs.get('sat')
maxSat = kwargs.get('sat')
# set up the parameters
fract = np.linspace(minLight, maxLight, nlev)
angle = 2.0 * pi * (start / 3.0 + rot * fract + 1.)
fract = fract**gamma
satar = np.linspace(minSat, maxSat, nlev)
amp = satar * fract * (1. - fract) / 2.
# compute the RGB vectors according to main equations
red = fract + amp * (-0.14861 * np.cos(angle) + 1.78277 * np.sin(angle))
grn = fract + amp * (-0.29227 * np.cos(angle) - 0.90649 * np.sin(angle))
blu = fract + amp * (1.97294 * np.cos(angle))
# find where RBB are outside the range [0,1], clip
red[np.where((red > 1.))] = 1.
grn[np.where((grn > 1.))] = 1.
blu[np.where((blu > 1.))] = 1.
red[np.where((red < 0.))] = 0.
grn[np.where((grn < 0.))] = 0.
blu[np.where((blu < 0.))] = 0.
# optional color reverse
if reverse is True:
red = red[::-1]
blu = blu[::-1]
grn = grn[::-1]
# put in to tuple & dictionary structures needed
rr = []
bb = []
gg = []
for k in range(0, int(nlev)):
rr.append((float(k) / (nlev - 1.), red[k], red[k]))
bb.append((float(k) / (nlev - 1.), blu[k], blu[k]))
gg.append((float(k) / (nlev - 1.), grn[k], grn[k]))
cdict = {'red': rr, 'blue': bb, 'green': gg}
return LSC('cubehelix_map', cdict)
import matplotlib.cm
name = "matteohelix"
specs = cubehelix(gamma=1.4, start=0.4, rot=-0.8, minLight=0.25)
specs_r = cubehelix(gamma=1.4, start=0.4, rot=-0.8, minLight=0.25, reverse=True)
matplotlib.cm.register_cmap(name=name, cmap=specs)
matplotlib.cm.register_cmap(name=name+"_r", cmap=specs_r)
plt.imshow(ampnorm, origin='bottom', cmap='matteohelix')
plt.colorbar()
plt.show()
Smooth this a bit:
from scipy.ndimage.filters import gaussian_filter
smoothed_amps = gaussian_filter(ampnorm, sigma=3, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0)
plt.imshow(smoothed_amps, origin='bottom', cmap='matteohelix')
plt.colorbar()
plt.show()
Use the same sigmoid opacity curve as last time.
def opaque_transform(x, mu, s):
"""
Using a cumulative distribution of logistic function:
http://en.wikipedia.org/wiki/Logistic_distribution
x: the x values
mu: std deviation
s: horizontal shift
"""
y = 0.5 + 0.5*(np.tanh((x-mu)/s))
return y
mu = 0.6 # lateral shift
s = 0.2 # steepness of sigmoid (small number = fast)
smoothed_amps = opaque_transform(smoothed_amps, mu, s)
plt.imshow(smoothed_amps, origin='bottom', cmap='matteohelix')
plt.colorbar()
plt.show()
We will use this as an opacity map.
Now we need to assign a colourmap to the z-values, and build the amplitude and similarity images:
from matplotlib.colors import hsv_to_rgb
zcmap = 'matteohelix_r'
# Assign amplitude to the Alpha (opacity) channel
ampRGBA = np.dstack((np.ones_like(ampnorm), np.zeros_like(ampnorm), np.zeros_like(ampnorm), smoothed_amps))
# Assign similarity to the Value channel
simHSV = np.dstack((np.zeros_like(simnorm), np.zeros_like(simnorm), simnorm))
simRGB = hsv_to_rgb(simHSV)
simRGBA = np.dstack((simRGB, np.ones_like(simnorm)))
Make a way to add a scale bar.
from matplotlib.path import Path
import matplotlib.patches as patches
def add_scale(ax, xo=10., yo=-20., dx=40., dy=2.5, spacing=25., units='km'):
distance = int(spacing * dx / 1000.0)
verts = [
(xo, yo), # left, bottom
(xo, yo+dy), # left, top
(xo+dx, yo+dy), # right, top
(xo+dx, yo), # right, bottom
(0., 0.), # ignored
]
codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]
path = Path(verts, codes)
patch = patches.PathPatch(path, facecolor='w', lw=1, alpha=0.5)
patch = ax.add_patch(patch)
patch.set_clip_on(False) # to draw scale outside axes boundary
ax.text(xo+dx, yo, ' ' + str(distance) + ' ' + units, horizontalalignment='left', verticalalignment='center')
return ax
Display what we have so far. We are going to combine these into a single map.
fig, axs = plt.subplots(1,3, figsize=(15,5), facecolor='w')
axs[0].imshow(z, cmap=zcmap, origin='bottom', vmin=750, vmax=1050)
axs[0].set_title('elevation')
axs[0].set_yticklabels([])
axs[0].set_xticklabels([])
axs[0] = add_scale(axs[0])
axs[1].imshow(simRGBA, origin='bottom', vmin=0.5, vmax=1.0)
axs[1].set_yticklabels([])
axs[1].set_xticklabels([])
axs[1].set_title('similarity')
axs[2].imshow(ampRGBA, origin='bottom')
axs[2].set_yticklabels([])
axs[2].set_xticklabels([])
axs[2].set_title('instantaneous amplitude')
#fig.savefig('images/elev_sim_amp_3_panel.png')
plt.show()
from matplotlib.colors import LightSource
elev_array = plt.get_cmap('matteohelix_r')(znorm)
# example showing how to make shaded relief plots
# like Mathematica
# (http://reference.wolfram.com/mathematica/ref/ReliefPlot.html)
# or Generic Mapping Tools
# (http://gmt.soest.hawaii.edu/gmt/doc/gmt/html/GMT_Docs/node145.html)
# Create light source object.
ls = LightSource(azdeg=350, altdeg=20)
# Shade data, creating an rgb array.
bumps = ls.shade(1-sim, plt.cm.Greys)
# Plot un-shaded and shaded images.
fig, axs = plt.subplots(2,2, figsize=(12,12), facecolor='w')
axs[0][1].imshow(bumps, cmap='Greys_r', origin='bottom')
axs[0][1].set_title('bump mapped similarity')
axs[0][1].set_yticklabels([])
axs[0][1].set_xticklabels([])
axs[1][1].imshow(elev_array*(bumps), origin='bottom')
axs[1][1].set_title('bump-mapped similarity')
axs[1][1].set_yticklabels([])
axs[1][1].set_xticklabels([])
axs[0][0].imshow(simRGBA, origin='bottom')
axs[0][0].set_title('similarity attribute along horizon')
axs[0][0].set_yticklabels([])
axs[0][0].set_xticklabels([])
axs[1][0].imshow(elev_array*simRGBA, origin='bottom')
axs[1][0].set_title('similarity attribute along horizon')
axs[1][0].set_yticklabels([])
axs[1][0].set_xticklabels([])
#plt.savefig('images/bump_mapping.png')
plt.show()
Now we can overlay the amplitude map we already made.
elev_array = plt.get_cmap('matteohelix_r')(znorm)
# example showing how to make shaded relief plots
# like Mathematica
# (http://reference.wolfram.com/mathematica/ref/ReliefPlot.html)
# or Generic Mapping Tools
# (http://gmt.soest.hawaii.edu/gmt/doc/gmt/html/GMT_Docs/node145.html)
# Create light source object.
ls = LightSource(azdeg=350,altdeg=20)
# Shade data, creating an rgb array.
bumps = ls.shade(1-sim, plt.cm.Greys)
# Plot un-shaded and shaded images.
fig, axs = plt.subplots(1,2, figsize=(12,8), facecolor='w')
axs[0].imshow(elev_array*bumps, origin='bottom',cmap='matteohelix')
axs[0].set_title('bump map')
axs[0].set_yticklabels([])
axs[0].set_xticklabels([])
axs[0] = add_scale(axs[0])
axs[1].imshow(elev_array*bumps, origin='bottom', cmap='matteohelix')
axs[1].imshow(ampRGBA, origin='bottom') # this is merely an overlay
axs[1].set_title('bump map with amplitude anomalies overlain')
axs[1].set_yticklabels([])
axs[1].set_xticklabels([])
plt.show()
elev_bar = matplotlib.cm.get_cmap('matteohelix_r')
from matplotlib.colors import makeMappingArray
ncolours = 32
elev_arr = makeMappingArray(ncolours, elev_bar)
elev_carr = elev_arr[np.newaxis, :]
elev_roll = np.rollaxis(elev_carr[:,:,:-1], 1)
elev_bar = np.fliplr(np.rollaxis(elev_roll,1))
elev_bar = np.tile(elev_bar,(5,1,1))
ampramp = np.linspace(-1.0,1.0,32)
ampramp = opaque_transform(ampramp, mu, s)
amp_carr = np.dstack((np.ones_like(ampramp), np.zeros_like(ampramp), np.zeros_like(ampramp), ampramp))
amp_bar = np.tile(amp_carr, (5,1,1))
simramp = np.linspace(0.0,1.0,32)
sim_carr = np.dstack((np.zeros_like(ampramp), np.zeros_like(ampramp), np.zeros_like(ampramp)))
simrgb = hsv_to_rgb(sim_carr)
simrgba = np.dstack((simrgb,simramp))
sim_bar = np.tile(simrgba, (5,1,1))
sim_bar.shape
(5, 32, 4)
Make a checker board style grid so we can see the transparency effect.
check = np.zeros((5, 32))
check[::2, 1::2] = 1
check[1::2, ::2] = 1
Make a function for displaying the colourbars.
def put_colorbars(ax1, ax2, ax3):
fs = 16 # fontsize for text inside colourbar
shade_of_grey = 5.0 # increase to make checkers lighter
ax1.imshow(check, cmap='gray_r', interpolation='nearest', vmax=shade_of_grey)
ax1.imshow(elev_bar, cmap='matteohelix_r', origin='upper')
ax1.set_yticks([])
ax1.set_ylabel('Elevation', rotation=0,ha='right', va='center')
ax1.text(2.0,2.5,'-', rotation=0, ha='center', va='center', fontsize = fs*1.5, color = 'w')
ax1.text(29.0,2.5,'+', rotation=0, ha='center', va='center', fontsize = fs)
ax1.set_xticks([])
ax2.imshow(check, cmap='gray_r', interpolation='nearest', vmax=shade_of_grey)
ax2.imshow(np.fliplr(sim_bar))
ax2.text(2.0,2.5,'-', rotation=0, ha='center', va='center', fontsize = fs*1.5, color='w')
ax2.text(29.0,2.5,'+', rotation=0, ha='center', va='center', fontsize = fs)
ax2.set_ylabel('Similarity', rotation=0, ha='right', va='center')
ax2.set_yticks([])
ax2.set_xticks([])
ax3.imshow(check, cmap='gray_r', interpolation='nearest', vmax=shade_of_grey)
ax3.imshow(amp_bar)
ax3.set_yticks([])
ax3.set_ylabel('Amplitude', rotation=0, ha='right', va='center')
ax3.text(2.0,2.5,'-', rotation=0, ha='center', va='center', fontsize = fs*1.5)
ax3.text(29.0,2.5,'+', rotation=0, ha='center', va='center', fontsize = fs)
ax3.set_xticks([])
return ax1, ax2, ax3
fig = plt.figure(figsize=(8, 3))
ax2 = fig.add_subplot(311)
ax3 = fig.add_subplot(312)
ax4 = fig.add_subplot(313)
ax2, ax3, ax4 = put_colorbars(ax2, ax3, ax4)
plt.show()
#import matplotlib.gridspec as gridspec
gs = plt.GridSpec(24, 3, wspace=0.2, hspace=0.2)
fig = plt.figure(figsize=(8, 10))
ax1 = fig.add_subplot(gs[:22, :])
ax1.imshow(elev_array*bumps, origin='bottom')
ax1.imshow(ampRGBA, origin='bottom') # this is merely an overlay
ax1.set_title('bump map with amplitude anomalies overlain')
ax1.set_yticklabels([])
ax1.set_xticklabels([])
ax1 = add_scale(ax1)
# 3 colorbars need 3 axes: ax2, ax3, ax4
ax2 = fig.add_subplot(gs[21, 2:])
ax3 = fig.add_subplot(gs[22, 2:])
ax4 = fig.add_subplot(gs[23, 2:])
ax2, ax3, ax4 = put_colorbars(ax2, ax3, ax4)
gs.update(hspace=0.1, wspace=0.5) # this will tighten up the colourbars
#plt.savefig('images/surface_corender.png')
plt.show()