PLATOONING TRAJECTORY AND SIGNAL PHASING OPTIMIZATION FOR CONNECTED AUTOMATED VEHICLES IN COORDINATED ARTERIALS Agustin Guerra, Lily Elefteriadou PhD

Motivation

- In the U.S current signal control strategies account for 295 million vehiclehours of delay on major roadways alone
- Simulation results suggest that it is possible to reduce delays by exploiting CAVs capabilities
- Several studies have developed signal control algorithms using CAVs at the intersection level, but there are few such studies for arterials

Objective

To develop a heuristic framework to jointly optimize (**I**) Connected Automated Vehicles (CAVs) trajectories, and (**II**) Signal Phasing and Timing (SPaT) in coordinated arterials.

I. Trajectory Optimization Methodology

A heuristic approach was developed to adjust CAVs trajectories using the kinematics equations (variable acceleration case) according to vehicles' location (Leader/Follower).

$$
x(t)_{l,n} = x(t_0) + \int_{t_0}^t v(t)dt
$$

$$
v(t)_{l,n} = v(t_0) + \int_{t_0}^t \alpha(t)dt
$$

$$
\alpha(t)_{l,n} = y - zt
$$

- \bullet L : Set of incoming lanes
- $V\colon \mathsf{Set}$ of all vehicles in $V_l;\,\forall\,l\;\in L$
- τ : Ideal time to the stop bar
- ψ : Actual time to the stop bar
- K Maximum number of vehicles that can be served at the S_h during the green interval

Preliminary simulation experiments showed that by adjusting the SPaT according to the PI can reduce travel time and delay by (2-8%) compared to (I).

Fig. 7: Comparison of PI variation over time.

Fig. 1: Concept of trajectory optimization algorithms.

Fig. 2: Conceptual physical framework.

The time complexity of the algorithms' is quadratic $O(n^2)$. This framework can be extended to Connected-Vehicles (CVs). It is expected that this joint optimization framework will outperformed the previous approach.

Simulation results showed that the trajectory optimization framework successfully form platoons at the saturation headway (S_h) without collision. The results showed that travel time and delay are reduced by (8-22%) and (11-23%), respectively.

Fig. 3: Study arterial for simulation experiments.

Fig. 4: Time-Space Diagram.

Fig. 5: Average Network Travel Time Improvements.

Fig. 6: Average Network Delay Improvements.

UTE Transportation Institute UNIVERSITY of FLORIDA

II. SPaT Optimization Methodology

A search-based algorithm is designed to optimize the SPaT. A novel Performance Index (PI) is set as the objective function. The PI represents how vehicles' trajectories deviates from their ideal trajectory.

$$
\begin{aligned}\n\max \quad & PI = \frac{1}{V} \sum_{l \in L} \sum_{n \in V_l} \left(\frac{\tau}{\psi}\right)_{n,l} \\
\text{s.t.} \quad & V_l \le K; \ \forall l \in L \\
& \tau_{n,l}, \ \psi_{n,l} \ge 0 \\
& V \in \mathbb{Z}^+ \n\end{aligned}
$$

where:

II. Preliminary Results

Fig. 8: Empirical time complexity.

Remarks