/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:396: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'names'] = self.var_names[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:398: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'scores'] = scores[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:401: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals'] = pvals[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:411: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals_adj'] = pvals_adj[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:422: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'logfoldchanges'] = np.log2(
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:396: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'names'] = self.var_names[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:398: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'scores'] = scores[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:401: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals'] = pvals[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:411: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals_adj'] = pvals_adj[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:422: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'logfoldchanges'] = np.log2(
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:396: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'names'] = self.var_names[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:398: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'scores'] = scores[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:401: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals'] = pvals[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:411: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals_adj'] = pvals_adj[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:422: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'logfoldchanges'] = np.log2(
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:396: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'names'] = self.var_names[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:398: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'scores'] = scores[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:401: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals'] = pvals[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:411: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals_adj'] = pvals_adj[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:422: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'logfoldchanges'] = np.log2(
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:396: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'names'] = self.var_names[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:398: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'scores'] = scores[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:401: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals'] = pvals[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:411: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals_adj'] = pvals_adj[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:422: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'logfoldchanges'] = np.log2(
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:396: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'names'] = self.var_names[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:398: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'scores'] = scores[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:401: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals'] = pvals[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:411: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'pvals_adj'] = pvals_adj[global_indices]
/opt/conda/lib/python3.10/site-packages/scanpy/tools/_rank_genes_groups.py:422: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self.stats[group_name, 'logfoldchanges'] = np.log2(